RESUMEN
Domestic ducks (Anas platyrhynchos domesticus) are resistant to most of the highly pathogenic avian influenza virus (HPAIV) infections. In this study, we characterized the lung proteome and phosphoproteome of ducks infected with the HPAI H5N1 virus (A/duck/India/02CA10/2011/Agartala) at 12 h, 48 h, and 5 days post-infection. A total of 2082 proteins were differentially expressed and 320 phosphorylation sites mapping to 199 phosphopeptides, corresponding to 129 proteins were identified. The functional annotation of the proteome data analysis revealed the activation of the RIG-I-like receptor and Jak-STAT signaling pathways, which led to the induction of interferon-stimulated gene (ISG) expression. The pathway analysis of the phosphoproteome datasets also confirmed the activation of RIG-I, Jak-STAT signaling, NF-kappa B signaling, and MAPK signaling pathways in the lung tissues. The induction of ISG proteins (STAT1, STAT3, STAT5B, STAT6, IFIT5, and PKR) established a protective anti-viral immune response in duck lung tissue. Further, the protein-protein interaction network analysis identified proteins like AKT1, STAT3, JAK2, RAC1, STAT1, PTPN11, RPS27A, NFKB1, and MAPK1 as the main hub proteins that might play important roles in disease progression in ducks. Together, the functional annotation of the proteome and phosphoproteome datasets revealed the molecular basis of the disease progression and disease resistance mechanism in ducks infected with the HPAI H5N1 virus.
RESUMEN
AIM: Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented. EXPERIMENTAL DESIGN: A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed. RESULTS: The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE. CONCLUSION: Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.
Asunto(s)
Hipoxia-Isquemia Encefálica , Accidente Cerebrovascular , Humanos , Recién Nacido , Femenino , Embarazo , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/etiología , Estudios de Casos y Controles , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Biomarcadores , Accidente Cerebrovascular/complicacionesRESUMEN
Introduction: Oral Squamous Cell Carcinoma (OSCC), a common malignancy of the head and neck region, is frequently diagnosed at advanced stages, necessitating the development of efficient diagnostic methods. Profiling autoantibodies generated against tumor-associated antigens have lately demonstrated a promising role in diagnosis, predicting disease course, and response to therapeutics and relapse. Methods: In the current study, we, for the first time, aimed to identify and evaluate the diagnostic value of autoantibodies in serum samples of patients with OSCC using autoantibody profiling by an immunome protein array. The utility of anti-NUBP2 antibody and tissue positivity in OSCC was further evaluated. Results and discussion: We identified a total of 53 autoantibodies with significant differential levels between OSCC and control groups, including 25 that were increased in OSCC and 28 that were decreased. These included autoantibodies against Thymidine kinase 1 (TK1), nucleotide-binding protein 2 (NUBP2), and protein pyrroline-5-carboxylate reductase 1 (PYCR1), among others. Immunohistochemical validation indicated positive staining of NUBP2 in a large majority of cases (72%). Further, analysis of OSCC data available in TCGA revealed higher NUBP2 expression correlated with better disease-free patient survival. In conclusion, the differential serum autoantibodies identified in the current study, including those for NUBP2, could be used as potential biomarkers for early diagnosis or as screening biomarkers for OSCC pending investigation in a larger cohort.
RESUMEN
COVID-19 pandemic continues to remain a global health concern owing to the emergence of newer variants. Several multi-Omics studies have produced extensive evidence on host-pathogen interactions and potential therapeutic targets. Nonetheless, an increased understanding of host signaling networks regulated by post-translational modifications and their ensuing effect on the cellular dynamics is critical to expanding the current knowledge on SARS-CoV-2 infections. Through an unbiased transcriptomics, proteomics, acetylomics, phosphoproteomics, and exometabolome analysis of a lung-derived human cell line, we show that SARS-CoV-2 Norway/Trondheim-S15 strain induces time-dependent alterations in the induction of type I IFN response, activation of DNA damage response, dysregulated Hippo signaling, among others. We identified interplay of phosphorylation and acetylation dynamics on host proteins and its effect on the altered release of metabolites, especially organic acids and ketone bodies. Together, our findings serve as a resource of potential targets that can aid in designing novel host-directed therapeutic strategies.
RESUMEN
In the present study, a targeted multiple reaction monitoring-mass spectrometry (MRM-MS) approach was developed to screen and identify protein biomarkers for brucellosis in humans and livestock. The selection of proteotypic peptides was carried out by generating in silico tryptic peptides of the Brucella proteome. Using bioinformatics analysis, 30 synthetic peptides corresponding to 10 immunodominant Brucella abortus proteins were generated. MRM-MS assays for the accurate detection of these peptides were optimized using 117 serum samples of human and livestock stratified as clinically confirmed (45), suspected (62), and control (10). Using high throughput MRM assays, transitions for four peptides were identified in several clinically confirmed and suspected human and livestock serum samples. Of these, peptide NAIYDVVTR corresponding to B. abortus proteins: BruAb2_0537 was consistently detected in the clinically confirmed serum samples of both humans and livestock with 100% specificity. To conclude, a high throughput MRM-MS-based protocol for detecting endogenous B. abortus peptides in serum samples of humans and livestock was developed. The developed protocol will help design sensitive assays to accurately diagnose brucellosis in humans and livestock. The data associated with this study are deposited in Panorama Public (https://panoramaweb.org/rNOZCy.url with ProteomeXchange ID: PXD034407).
Asunto(s)
Brucella abortus , Brucelosis , Animales , Humanos , Brucella abortus/metabolismo , Ganado , Brucelosis/diagnóstico , Espectrometría de Masas , Péptidos/metabolismoRESUMEN
In the present study, a comprehensive proteomic analysis of Brucella melitensis (B. melitensis) strain ATCC23457 was carried out to investigate proteome alterations in response to in vitro-induced nutrient stress. Our analysis resulted in the identification of 2440 proteins, including 365 hypothetical proteins and 850 potentially secretory proteins representing ~77.8% of the B. melitensis proteome. Utilizing a proteogenomics approach, we provide translational evidence for eight novel putative protein-coding genes and confirmed the coding potential of 31 putatively annotated pseudogenes, thus refining the existing genome annotation. Further, using a label-free quantitative proteomic approach, new insights into the cellular processes governed by nutrient stress, including enrichment of amino acid metabolism (E), transcription (K), energy production and conversion (C), and biogenesis (J) processes were obtained. Pathway analysis revealed the enrichment of survival and homeostasis maintenance pathways, including type IV secretion system, nitrogen metabolism, and urease pathways in response to nutrient limitation. To conclude, our analysis demonstrates the utility of in-depth proteomic analysis in enabling improved annotation of the B. melitensis genome. Further, our results indicate that B. melitensis undergoes metabolic adaptations during nutrient stress similar to other Brucella. sp, and adapts itself for long-term persistence and survival.
Asunto(s)
Brucella melitensis , Proteómica , Brucella melitensis/genética , Proteoma , Aclimatación , NutrientesRESUMEN
Malaria is a vector-borne disease. It is caused by Plasmodium parasites. Plasmodium yoelii is a rodent model parasite, primarily used for studying parasite development in liver cells and vectors. To better understand parasite biology, we carried out a high-throughput-based proteomic analysis of P. yoelii. From the same mass spectrometry (MS)/MS data set, we also captured several post-translational modified peptides by following a bioinformatics analysis without any prior enrichment. Further, we carried out a proteogenomic analysis, which resulted in improvements to some of the existing gene models along with the identification of several novel genes. Analysis of proteome and post-translational modifications (PTMs) together resulted in the identification of 3124 proteins. The identified PTMs were found to be enriched in mitochondrial metabolic pathways. Subsequent bioinformatics analysis provided an insight into proteins associated with metabolic regulatory mechanisms. Among these, the tricarboxylic acid (TCA) cycle and the isoprenoid synthesis pathway are found to be essential for parasite survival and drug resistance. The proteogenomic analysis discovered 43 novel protein-coding genes. The availability of an in-depth proteomic landscape of a malaria pathogen model will likely facilitate further molecular-level investigations on pre-erythrocytic stages of malaria.
RESUMEN
Interleukin-33 (IL-33), a member of the IL-1 superfamily cytokines, is an endogenous danger signal and a nuclear-associated cytokine. It is one of the essential mediators of both innate and adaptive immune responses. Aberrant IL-33 signaling has been demonstrated to play a defensive role against various infectious and inflammatory diseases. Although the signaling responses mediated by IL-33 have been previously reported, the temporal signaling dynamics are yet to be explored. To this end, we applied quantitative temporal phosphoproteomics analysis to elucidate pathways and proteins induced by IL-33 in THP-1 monocytes. Employing a TMT labeling-based quantitation and titanium dioxide (TiO2)-based phosphopeptide enrichment strategy followed by mass spectrometry analysis, we identified and quantified 9448 unique phosphopeptides corresponding to 3392 proteins that showed differential regulation. Of these, 171 protein kinases, 60 phosphatases and 178 transcription factors were regulated at different phases of IL-33 signaling. In addition to the confirmed activation of canonical signaling modules including MAPK, NFκB, PI3K/AKT modules, pathway analysis of the time-dependent phosphorylation dynamics revealed enrichment of several cellular processes, including leukocyte adhesion, response to reactive oxygen species, cell cycle checkpoints, DNA damage and repair pathways. The detailed quantitative phosphoproteomic map of IL-33 signaling will serve as a potentially useful resource to study its function in the context of inflammatory and pathological conditions.
Asunto(s)
Cromatografía Liquida/métodos , Interleucina-33/metabolismo , Espectrometría de Masas/métodos , Monocitos/metabolismo , Proteómica/métodos , Humanos , Transducción de SeñalRESUMEN
Toll-like receptors (TLRs) are highly-conserved pattern recognition receptors that mediate innate immune responses to invading pathogens and endogenous danger signals released from damaged and dying cells. Activation of TLRs trigger downstream signaling cascades, that culminate in the activation of interferon regulatory factors (IRFs), which subsequently leads to type I interferon (IFN) response. In the current study, we sought to expand the scope of gene expression changes in THP1-derived macrophages upon TLR4 activation and to identify interferon-stimulated genes. RNA-seq analysis led to the identification of several known and novel differentially expressed genes, including CMPK2, particularly in association with type I IFN signaling. We performed an in-depth characterization of CMPK2 expression, a nucleoside monophosphate kinase that supplies intracellular UTP/CTP for nucleic acid synthesis in response to type I IFN signaling in macrophages. CMPK2 was significantly induced at both RNA and protein levels upon stimulation with TLR4 ligand-LPS and TLR3 ligand-Poly (I:C). Confocal microscopy and subcellular fractionation indicated CMPK2 localization in both cytoplasm and mitochondria of THP-1 macrophages. Furthermore, neutralizing antibody-based inhibition of IFNAR receptor in THP-1 cells and BMDMs derived from IFNAR KO and IRF3 KO knockout mice further revealed that CMPK2 expression is dependent on LPS/Poly (I:C) mediated IRF3- type I interferon signaling. In summary, our findings suggest that CMPK2 is a potential interferon-stimulated gene in THP-1 macrophages and that CMPK2 may facilitate IRF3- type I IFN-dependent anti-bacterial and anti-viral roles.
Asunto(s)
Expresión Génica/inmunología , Factor 3 Regulador del Interferón/inmunología , Macrófagos/metabolismo , Nucleósido-Fosfato Quinasa/inmunología , Receptor de Interferón alfa y beta/inmunología , Animales , Humanos , Macrófagos/citología , Ratones , Ratones Noqueados , Células THP-1RESUMEN
Leptospirosis is a re-emerging form of zoonosis that is caused by the spirochete pathogen Leptospira. Extracellular proteins play critical roles in the pathogenicity and survival of this pathogen in the host and environment. Extraction and analysis of extracellular proteins is a difficult task due to the abundance of enrichments like serum and bovine serum albumin in the culture medium, as is distinguishing them from the cellular proteins that may reach the analyte during extraction. In this study, extracellular proteins were separated as secretory proteins from the culture supernatant and surface proteins were separated during the washing of the cell pellet. The proteins identified were sorted based on the proportion of the cellular fractions and the extracellular fractions. The results showed the identification of 56 extracellular proteins, out of which 19 were exclusively extracellular. For those proteins, the difference in quantity with respect to their presence within the cell was found to be up to 1770-fold. Further, bioinformatics analysis elucidated characteristics and functions of the identified proteins. Orthologs of extracellular proteins in various Leptospira species were found to be closely related among different pathogenic forms. In addition to the identification of extracellular proteins, this study put forward a method for the extraction and identification of extracellular proteins.
RESUMEN
Resistance to cancer chemotherapy is a major global health burden. Epidermal growth factor receptor (EGFR) is a proven therapeutic target for multiple cancers of epithelial origin. Despite its overexpression in >90% of head and neck squamous cell carcinoma (HNSCC) patients, tyrosine kinase inhibitors such as erlotinib have shown a modest response in clinical trials. Cellular heterogeneity is thought to play an important role in HNSCC therapeutic resistance. Genomic alterations alone cannot explain all resistance mechanisms at play in a heterogeneous system. It is thus important to understand the biochemical mechanisms associated with drug resistance to determine potential strategies to achieve clinical response. We investigated tyrosine kinase signaling networks in erlotinib-resistant cells using quantitative tyrosine phosphoproteomics approach. We observed altered phosphorylation of proteins involved in cell adhesion and motility in erlotinib-resistant cells. Bioinformatics analysis revealed enrichment of pathways related to regulation of the actin cytoskeleton, extracellular matrix (ECM)-receptor interaction, and endothelial migration. Of importance, enrichment of the focal adhesion kinase (PTK2) signaling pathway downstream of EGFR was also observed in erlotinib-resistant cells. To the best of our knowledge, we present the first report of tyrosine phosphoproteome profiling in erlotinib-resistant HNSCC, with an eye to inform new ways to achieve clinical response. Our findings suggest that common signaling networks are at play in driving resistance to EGFR-targeted therapies in HNSCC and other cancers. Most notably, our data suggest that the PTK2 pathway genes may potentially play a significant role in determining clinical response to erlotinib in HNSCC tumors.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Aminoácidos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Resistencia a Antineoplásicos , Clorhidrato de Erlotinib/farmacología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Marcaje Isotópico , Inhibidores de Proteínas Quinasas/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , TirosinaRESUMEN
Macrophages are sentinels of the innate immune system, and the human monocytic cell line THP-1 is one of the widely used in vitro models to study inflammatory processes and immune responses. Several monocyte-to-macrophage differentiation protocols exist, with phorbol 12-myristate-13-acetate (PMA) being the most commonly used and accepted method. However, the concentrations and duration of PMA treatment vary widely in the published literature and could affect the probed phenotype, however their effect on protein expression is not fully deciphered. In this study, we employed a dimethyl labeling-based quantitative proteomics approach to determine the changes in the protein repertoire of macrophage-like cells differentiated from THP-1 monocytes by three commonly used PMA-based differentiation protocols. Employing an integrated network analysis, we show that variations in PMA concentration and duration of rest post-stimulation result in downstream differences in the protein expression and cellular signaling processes. We demonstrate that these differences result in altered inflammatory responses, including variation in the expression of cytokines upon stimulation with various Toll-like receptor (TLR) agonists. Together, these findings provide a valuable resource that significantly expands the knowledge of protein expression dynamics with one of the most common in vitro models for macrophages, which in turn has a profound impact on the immune as well as inflammatory responses being studied.
Asunto(s)
Inmunidad , Macrófagos/metabolismo , Monocitos/metabolismo , Proteoma , Proteómica , Biomarcadores , Diferenciación Celular/inmunología , Membrana Celular , Biología Computacional/métodos , Citocinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Monocitos/inmunología , Proteómica/métodos , Transducción de Señal , Células THP-1 , Acetato de Tetradecanoilforbol/inmunología , TranscriptomaRESUMEN
Loss of cell differentiation is a hallmark for the progression of oral squamous cell carcinoma (OSCC). Archival Formalin-Fixed Paraffin-Embedded (FFPE) tissues constitute a valuable resource for studying the differentiation of OSCC and can offer valuable insights into the process of tumor progression. In the current study, we performed LC-MS/MS-based quantitative proteomics of FFPE specimens from pathologically-confirmed well-differentiated, moderately-differentiated, and poorly-differentiated OSCC cases. The data were analyzed in four technical replicates, resulting in the identification of 2376 proteins. Of these, 141 and 109 were differentially expressed in moderately-differentiated and poorly differentiated OSCC cases, respectively, compared to well-differentiated OSCC. The data revealed significant metabolic reprogramming with respect to lipid metabolism and glycolysis with proteins belonging to both these processes downregulated in moderately-differentiated OSCC when compared to well-differentiated OSCC. Signaling pathway analysis indicated the alteration of extracellular matrix organization, muscle contraction, and glucose metabolism pathways across tumor grades. The extracellular matrix organization pathway was upregulated in moderately-differentiated OSCC and downregulated in poorly differentiated OSCC, compared to well-differentiated OSCC. PADI4, an epigenetic enzyme transcriptional regulator, and its transcriptional target HIST1H1B were both found to be upregulated in moderately differentiated and poorly differentiated OSCC, indicating epigenetic events underlying tumor differentiation. In conclusion, the findings support the advantage of using high-resolution mass spectrometry-based FFPE archival blocks for clinical and translational research. The candidate signaling pathways identified in the study could be used to develop potential therapeutic targets for OSCC.
RESUMEN
Apicomplexan parasites are causative agents of major human diseases. Calcium Dependent Protein Kinases (CDPKs) are crucial components for the intracellular development of apicomplexan parasites and are thus considered attractive drug targets. CDPK7 is an atypical member of this family, which initial characterization suggested to be critical for intracellular development of both Apicomplexa Plasmodium falciparum and Toxoplasma gondii. However, the mechanisms via which it regulates parasite replication have remained unknown. We performed quantitative phosphoproteomics of T. gondii lacking TgCDPK7 to identify its parasitic targets. Our analysis lead to the identification of several putative TgCDPK7 substrates implicated in critical processes like phospholipid (PL) synthesis and vesicular trafficking. Strikingly, phosphorylation of TgRab11a via TgCDPK7 was critical for parasite intracellular development and protein trafficking. Lipidomic analysis combined with biochemical and cellular studies confirmed that TgCDPK7 regulates phosphatidylethanolamine (PE) levels in T. gondii. These studies provide novel insights into the regulation of these processes that are critical for parasite development by TgCDPK7.
Asunto(s)
Lipogénesis , Fosfatidiletanolaminas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasmosis/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/parasitología , Humanos , Fosforilación , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/parasitologíaRESUMEN
Cancer genome sequencing studies have revealed a number of variants in coding regions of several genes. Some of these coding variants play an important role in activating specific pathways that drive proliferation. Coding variants present on cancer cell surfaces by the major histocompatibility complex serve as neo-antigens and result in immune activation. The success of immune therapy in patients is attributed to neo-antigen load on cancer cell surfaces. However, which coding variants are expressed at the protein level can't be predicted based on genomic data. Complementing genomic data with proteomic data can potentially reveal coding variants that are expressed at the protein level. However, identification of variant peptides using mass spectrometry data is still a challenging task due to the lack of an appropriate tool that integrates genomic and proteomic data analysis pipelines. To overcome this problem, and for the ease of the biologists, we have developed a graphical user interface (GUI)-based tool called CusVarDB. We integrated variant calling pipeline to generate sample-specific variant protein database from next-generation sequencing datasets. We validated the tool with triple negative breast cancer cell line datasets and identified 423, 408, 386 and 361 variant peptides from BT474, MDMAB157, MFM223 and HCC38 datasets, respectively.
Asunto(s)
Biología Computacional , Bases de Datos de Proteínas , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Humanos , ProteómicaRESUMEN
The Triton X-114-based solubilization and temperature-dependent phase separation of proteins is used for subcellular fractionation where, aqueous, detergent, and pellet fractions represents cytoplasmic, outer membrane (OM), and inner membrane proteins, respectively. Mass spectrometry-based proteomic analysis of Triton X-114 fractions of proteomic analysis of Leptospira interrogans identified 2957 unique proteins distributed across the fractions. The results are compared with bioinformatics predictions on their subcellular localization and pathogenic nature. Analysis of the distribution of proteins across the Triton X-114 fractions with the predicted characteristics is performed based on "number" of unique type of proteins, and "quantity" which represents the amount of unique protein. The highest number of predicted outer membrane proteins (OMPs) and pathogenic proteins are found in aqueous and pellet fractions, whereas detergent fraction representing the OM has the highest quantity of OMPs and pathogenic proteins though lower in number than the aqueous and pellet fractions. This leaves the possibility of an upsurge in pathogenic proteins and OMPs on the OM under pathogenic conditions suggesting their potential use to combat leptospirosis. Further, the Triton X-114 subcellular fractions are more correlated to enrichment of pathogenic proteins predicted by MP3 software than predicted localization.
Asunto(s)
Leptospira interrogans , Octoxinol , Proteómica , Proteínas de la Membrana Bacteriana Externa , Detergentes , ProteomaRESUMEN
Mapping the normal eye proteome in healthy persons is essential to unravel the molecular basis of diseases impacting visual health. The vitreous occupies a large portion of the human eye between the lens and the retina and plays a significant role in vitreoretinal diseases as well as maintaining clarity in the visual field, providing nutrition to the lens, and protecting the eye from mechanical shocks. It comprises four distinct anatomical regions, namely the vitreous core, vitreous cortex, vitreous base, and anterior hyaloid. Among these, the vitreous is attached to other substructures in the eye by the vitreous base, which is its strongest point of attachment. Alterations in vitreous substructures have been reported in several vitreoretinal disorders, including vitreomacular traction, vitreoretinopathies, and age-related macular degeneration. There has been limited knowledge on proteomics variations at a resolution of vitreous substructures, including the functionally and pathophysiologically significant vitreous base. We report here new findings on the proteome map of the vitreous base in normal healthy tissue. We employed a global, unbiased proteomic profiling approach resulting in the identification of 6511 proteins. Of these, 302 proteins were involved in metabolic processes essential for energy utilization. Moreover, we identified several structural and nutrient transport proteins. Notably, the identified proteome repertoire indicates that the vitreous base might possess additional physiological functions and may not be a passive structure. This study constitutes the most extensive catalog of vitreous base proteins to our knowledge and offers novel insights as a baseline for future studies on the pathobiology of various eye diseases. These data also invite us to consider a potentially more active functional role for the vitreous base in eye physiology and visual health.
Asunto(s)
Proteínas del Ojo/metabolismo , Proteoma , Proteómica , Cuerpo Vítreo/metabolismo , Biología Computacional/métodos , Análisis de Datos , Ontología de Genes , Humanos , Proteómica/métodos , Transducción de Señal , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Phosphorylation is an important regulatory mechanism of protein activity in cells. Studies in various cancers have reported perturbations in kinases resulting in aberrant phosphorylation of oncoproteins and tumor suppressor proteins. METHODS: In this study, we carried out quantitative phosphoproteomic analysis of gastric cancer tissues and corresponding xenograft samples. Using these data, we employed bioinformatics analysis to identify aberrant signaling pathways. We further performed molecular inhibition and silencing of the upstream regulatory kinase in gastric cancer cell lines and validated its effect on cellular phenotype. Through an ex vivo technology utilizing patient tumor and blood sample, we sought to understand the therapeutic potential of the kinase by recreating the tumor microenvironment. RESULTS: Using mass spectrometry-based high-throughput analysis, we identified 1,344 phosphosites and 848 phosphoproteins, including differential phosphorylation of 177 proteins (fold change cut-off ≥ 1.5). Our data showed that a subset of differentially phosphorylated proteins belonged to splicing machinery. Pathway analysis highlighted Cdc2-like kinase (CLK1) as upstream kinase. Inhibition of CLK1 using TG003 and CLK1 siRNA resulted in a decreased cell viability, proliferation, invasion and migration as well as modulation in the phosphorylation of SRSF2. Ex vivo experiments which utilizes patient's own tumor and blood to recreate the tumor microenvironment validated the use of CLK1 as a potential target for gastric cancer treatment. CONCLUSIONS: Our data indicates that CLK1 plays a crucial role in the regulation of splicing process in gastric cancer and that CLK1 can act as a novel therapeutic target in gastric cancer.
Asunto(s)
Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteoma/metabolismo , Neoplasias Gástricas/patología , Animales , Apoptosis , Biomarcadores de Tumor , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones SCID , Invasividad Neoplásica , Fosforilación , Pronóstico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteoma/análisis , ARN Interferente Pequeño/genética , Neoplasias Gástricas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Success rates of corneal transplantation are particularly high owing to its unique, innate immune privilege derived from a phenomenon known as Anterior Chamber-Associated Immune Deviation (ACAID). Of note, cornea is a transparent, avascular structure that acts as a barrier along with sclera to protect the eye and contributes to optical power. Molecular and systems biology mechanisms underlying ACAID and the immunologically unique and privileged status of cornea are not well known. We report here a global unbiased proteomic profiling of the human cornea and the identification of 4824 proteins, the largest catalog of human corneal proteins identified to date. Moreover, signaling pathway analysis revealed enrichment of spliceosome, phagosome, lysosome, and focal adhesion pathways, thereby demonstrating the protective functions of corneal proteins. We observed an enrichment of neutrophil-mediated immune response processes in the cornea as well as proteins belonging to the complement and ER-Phagosome pathways that are suggestive of active immune and inflammatory surveillance response. This study provides a key expression map of the corneal proteome repertoire that should enable future translational medicine studies on the pathological conditions of the cornea and the mechanisms by which cornea immunology are governed. Molecular mechanisms of corneal immune privilege have broad relevance to understand and anticipate graft rejection in the field of organ transplantation.
Asunto(s)
Cámara Anterior/inmunología , Córnea/inmunología , Proteínas del Ojo/genética , Redes Reguladoras de Genes/inmunología , Privilegio Inmunológico , Proteínas del Ojo/clasificación , Proteínas del Ojo/inmunología , Adhesiones Focales/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Lisosomas/inmunología , Neutrófilos/inmunología , Fagosomas/inmunología , Proteómica/métodos , Transducción de Señal , Empalmosomas/inmunologíaRESUMEN
CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells. The activation and functional status of CD4+ T cells is important for adequate responses to pathogen infections but has also been associated with auto-immune disorders and survival in several cancers. In the current study, we carried out a label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed between resting and activated CD4+ T cells. In addition to identifying several known T-cell activation-related processes altered expression of several stimulatory/inhibitory immune checkpoint markers between resting and activated CD4+ T cells were observed. Network analysis further revealed several known and novel regulatory hubs of CD4+ T cell activation, including IFNG, IRF1, FOXP3, AURKA, and RIOK2. Comparison of primary CD4+ T cell proteomic profiles with human lymphoblastic cell lines revealed a substantial overlap, while comparison with mouse CD+ T cell data suggested interspecies proteomic differences. The current dataset will serve as a valuable resource to the scientific community to compare and analyze the CD4+ proteome.