Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 7452, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460648

RESUMEN

The resolution of fluorescence microscopy images is limited by the physical properties of light. In the last decade, numerous super-resolution microscopy (SRM) approaches have been proposed to deal with such hindrance. Here we present Mean-Shift Super Resolution (MSSR), a new SRM algorithm based on the Mean Shift theory, which extends spatial resolution of single fluorescence images beyond the diffraction limit of light. MSSR works on low and high fluorophore densities, is not limited by the architecture of the optical setup and is applicable to single images as well as temporal series. The theoretical limit of spatial resolution, based on optimized real-world imaging conditions and analysis of temporal image stacks, has been measured to be 40 nm. Furthermore, MSSR has denoising capabilities that outperform other SRM approaches. Along with its wide accessibility, MSSR is a powerful, flexible, and generic tool for multidimensional and live cell imaging applications.


Asunto(s)
Algoritmos , Medicamentos Genéricos , Sistemas de Lectura , Microscopía Fluorescente , Colorantes Fluorescentes
2.
J Microsc ; 288(3): 218-241, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35896096

RESUMEN

Due to the wave nature of light, optical microscopy has a lower-bound lateral resolution limit of approximately half of the wavelength of visible light, that is, within the range of 200 to 350 nm. Fluorescence fluctuation-based super-resolution microscopy (FF-SRM) is a term used to encompass a collection of image analysis techniques that rely on the statistical processing of temporal variations of the fluorescence signal. FF-SRM aims to reduce the uncertainty of the location of fluorophores within an image, often improving spatial resolution by several tens of nanometers. FF-SRM is suitable for live-cell imaging due to its compatibility with most fluorescent probes and relatively simple instrumental and experimental requirements, which are mostly camera-based epifluorescence instruments. Each FF-SRM approach has strengths and weaknesses, which depend directly on the underlying statistical principles through which enhanced spatial resolution is achieved. In this review, the basic concepts and principles behind a range of FF-SRM methods published to date are described. Their operational parameters are explained and guidance for their selection is provided.


Due to light's wave nature, an optical microscope's resolution range is 200 to 350 nanometers. Several techniques enhance resolution; this work encompasses several fluorescence fluctuation super-resolution (FF-SMR) methods capable of achieving nanoscopic scales. FF-SRM is known to be suitable for fixed or live-cell imaging and compatible with most conventional microscope setups found in a laboratory. However, each FF-SRM approach has its strengths and weaknesses, which depend directly on the underlying principles through which enhanced spatial resolution is achieved. Therefore, the basic concepts and principles behind diverse FF-SRM methods are revisited in this review. In addition, their operational parameters are explained, and guidance for their selection is provided for microscopists interested in FF-SRM.


Asunto(s)
Colorantes Fluorescentes , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos
3.
ACS Omega ; 3(6): 7008-7018, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30221235

RESUMEN

The plant xylem is a preferred niche for some important bacterial phytopathogens, some of them encoding expansin proteins, which bind plant cell walls. Yet, the identity of the substrate for bacterial expansins within the plant cell wall and the nature of its interaction with it are poorly known. Here, we determined the localization of two bacterial expansins with differing isoelectric points (and with differing binding patterns to cell wall extracts) on plant tissue through in vitro fluorophore labeling and confocal imaging. Differential localization was observed, in which Exl1 from Pectobacterium carotovorum located into the intercellular spaces between xylem vessels and adjacent cells of the plant xylem, whereas EXLX1 from Bacillus subtilis bound cell walls of most cell types. In isolated vascular tissue, however, both PcExl1 and BsEXLX1 preferentially bound to tracheary elements over the xylem fibers, even though both are composed of secondary cell walls. Fluorescence correlation spectroscopy, employed to analyze the interaction of expansins with isolated xylem, indicates that binding is governed by more than one factor, which could include interaction with more than one type of polymer in the fibers, such as cellulose and hemicellulose or pectin. Binding to different polysaccharides could explain the observed reduction of cellulolytic and xylanolytic activities in the presence of expansin, possibly because of competition for the substrate. Our findings are relevant for the comprehensive understanding of the pathogenesis by P. carotovorum during xylem invasion, a process in which Exl1 might be involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...