Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Oncol Lett ; 25(2): 86, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36760518

RESUMEN

Bacteriophages effectively counteract diverse bacterial infections, and their ability to treat most types of cancer has been explored using phage engineering or phage-virus hybrid platforms. In the present study, it was demonstrated that the bacteriophage MS2 can affect the expression of genes associated with the proliferation and survival of LNCaP prostate epithelial cells. LNCaP cells were exposed to bacteriophage MS2 at a concentration of 1×107 plaque forming units/ml for 24-48 h. After exposure, various cellular parameters, including cell viability, morphology, and changes in gene expression, were examined. MS2 affected cell viability adversely, reducing viability by 25% in the first 4 h of treatment; however, cell viability recovered within 24-48 h. Similarly, the AKT, androgen receptor, integrin α5, integrin ß1, MAPK1, MAPK3, STAT3, and peroxisome proliferator-activated receptor-γ coactivator 1α genes, which are involved in various normal cellular processes and tumor progression, were significantly upregulated, whereas the expression levels of HSP90, ITGB5, ITGB3, HSP27, ITGAV, and PI3K genes were unchanged. Therefore, based on viability and gene expression changes, bacteriophage MS2 severely impaired LNCaP cells by reducing anchorage-dependent survival and androgen signaling. A caveolin-mediated endocytosis mechanism for MS2-mediated signaling in prostate cancer cells was proposed based on reports involving bacteriophages T4, M13, and MS2, and their interactions with LNCaP and PC3 cell lines.

2.
Arch Otolaryngol Head Neck Surg ; 132(9): 958-66, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16982972

RESUMEN

OBJECTIVE: To investigate whether oral squamous cell carcinomas (OSCCs) from young (/=60 years) patients have differential expression levels of GSTP1, FANCA, FANCC, FANCD2, and FANCG. DESIGN: Quantitative real-time reverse transcriptase-polymerase chain reaction and immunohistochemical analysis were used to assess gene and protein expression, respectively. SETTING: This study was performed in a research institute within a hospital setting. PATIENTS: Our study group consisted of 104 patients (42 young and 62 older). We collected RNA from 32 OSCC samples (10 young and 22 older patients) for gene expression analysis. Seventy-seven OSCC samples (37 from young and 40 from older patients) were used for protein expression analysis. Five patients were studied in both analyses. RESULTS: Lower expression of GSTP1 (P = .04) and FANCA (P = .01) was observed in the tumors of young compared with older patients. We also detected lower expression of GSTP1 in the tumors of young patients compared with their nondysplastic mucosa (P = .01). FANCA was underexpressed in nondysplastic mucosa of young compared with older patients (P = .01). GSTP1 protein showed negative or low expression in 41% (n = 15 of 37) of young vs 5% (n = 2 of 40) of older patient tumors (P = .001). FANCG protein expression was absent or low in 81% (n = 30 of 37) of young compared with 36% (n = 15 of 40) of older patient tumors (P<.001). CONCLUSIONS: Differences in expression levels of GSTP1, FANCA, and FANCG in OSCC of young and older patients suggest that different mechanisms may be involved in tumor development through defective carcinogen metabolism and/or DNA repair capabilities. GSTP1 plays a key role in detoxification; therefore, underexpression of this gene in tumors of young patients may cause deficient detoxification that could lead to an increased susceptibility to the development of oral carcinoma.


Asunto(s)
Carcinoma de Células Escamosas/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Gutatión-S-Transferasa pi/genética , Neoplasias de la Boca/genética , Adulto , Femenino , Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Lab Invest ; 85(8): 947-61, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15880136

RESUMEN

The molecular mechanisms underlying salivary gland tumorigenesis remain unclear. In order to identify genetic changes that occur during the development of invasive adenocarcinoma from normal salivary gland, we used the Smgb-Tag transgenic mouse model. This transgene induces the progressive development of dysplasia to invasive adenocarcinoma in the submandibular salivary gland. Gene expression patterns from 20 submandibular glands (two normal, nine dysplasia and nine adenocarcinoma samples) were assessed using a mouse 15 K cDNA array. Unsupervised hierarchical clustering was used to group gene expression based on 157 differentially expressed genes distinguishing between dysplasias and adenocarcinomas. Further analysis identified 25 significantly overexpressed and 28 underexpressed cDNA sequences in adenocarcinoma as compared to dysplasia. Differential expression of five genes (Lcn2, Ptn, Cd24a, Mapk6 and Rnps1) was validated by quantitative real-time RT-PCR in a total of 48 mouse salivary gland tissues (seven histologically normal, 13 dysplasias and 28 adenocarcinomas), including the 20 samples analyzed by cDNA arrays. Immunohistochemical analysis was used to validate the expression of Ptn and Cd24a at the protein level in a subset of 16 mouse salivary glands (four normal, five dysplasia and seven adenocarcinoma samples), as well as in 23 human submandibular gland tumors (16 pleomorphic adenomas, three adenoid cystic carcinomas, one acinic cell carcinoma, one adenocarcinoma NOS, one myoepithelial and one mucoepidermoid carcinoma). We thus demonstrated that the Smgb-Tag transgenic mouse model is a useful tool for the identification of genes that are deregulated in salivary gland adenocarcinomas. Our data suggest that Ptn and Cd24a may be genetic markers associated with salivary gland tumorigenesis and/or progression.


Asunto(s)
Adenocarcinoma/genética , Modelos Animales de Enfermedad , Neoplasias de las Glándulas Salivales/genética , Animales , Análisis por Conglomerados , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias de las Glándulas Salivales/clasificación , Neoplasias de las Glándulas Salivales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA