Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 224: 116203, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615919

RESUMEN

Acute kidney injury (AKI) is common in hospitalized patients and increases short-term and long-term mortality. Treatment options for AKI are limited. Gut microbiota products such as the short-chain fatty acid butyrate have anti-inflammatory actions that may protect tissues, including the kidney, from injury. However, the molecular mechanisms of tissue protection by butyrate are poorly understood. Treatment with oral butyrate for two weeks prior to folic acid-induced AKI and during AKI improved kidney function and decreased tubular injury and kidney inflammation while stopping butyrate before AKI was not protective. Continuous butyrate preserved the expression of kidney protective factors such as Klotho, PGC-1α and Nlrp6 which were otherwise downregulated. In cultured tubular cells, butyrate blunted the maladaptive tubular cell response to a proinflammatory milieu, preserving the expression of kidney protective factors. Kidney protection afforded by this continuous butyrate schedule was confirmed in a second model of nephrotoxic AKI, cisplatin nephrotoxicity, where the expression of kidney protective factors was also preserved. To assess the contribution of preservation of kidney protective factors to kidney resilience, recombinant Klotho was administered to mice with cisplatin-AKI and shown to preserve the expression of PGC-1α and Nlrp6, decrease kidney inflammation and protect from AKI. In conclusion, butyrate promotes kidney resilience to AKI and decreases inflammation by preventing the downregulation of kidney protective genes such as Klotho. This information may be relevant to optimize antibiotic management during hospitalization.

2.
Sci Adv ; 10(3): eadk6524, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241373

RESUMEN

Pulmonary hypertension (PH) can affect both pulmonary arterial tree and cardiac function, often leading to right heart failure and death. Despite the urgency, the lack of understanding has limited the development of effective cardiac therapeutic strategies. Our research reveals that MCJ modulates mitochondrial response to chronic hypoxia. MCJ levels elevate under hypoxic conditions, as in lungs of patients affected by COPD, mice exposed to hypoxia, and myocardium from pigs subjected to right ventricular (RV) overload. The absence of MCJ preserves RV function, safeguarding against both cardiac and lung remodeling induced by chronic hypoxia. Cardiac-specific silencing is enough to protect against cardiac dysfunction despite the adverse pulmonary remodeling. Mechanistically, the absence of MCJ triggers a protective preconditioning state mediated by the ROS/mTOR/HIF-1α axis. As a result, it preserves RV systolic function following hypoxia exposure. These discoveries provide a potential avenue to alleviate chronic hypoxia-induced PH, highlighting MCJ as a promising target against this condition.


Asunto(s)
Hipertensión Pulmonar , Animales , Humanos , Ratones , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia , Pulmón , Miocardio , Arteria Pulmonar , Porcinos
3.
Clin Kidney J ; 16(12): 2672-2682, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38046008

RESUMEN

Background: Chronic kidney disease (CKD), especially diabetic CKD, is the condition that most increases the risk of lethal coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the underlying molecular mechanisms are unclear. SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) regulate coronavirus cell entry and/or replication. We hypothesized that CKD may alter the expression of SCARF genes. Methods: A literature search identified 34 SCARF genes of which we selected 21 involved in interactions between SARS-CoV/SARS-CoV-2 and host cells, and assessed their mRNA expression in target tissues of COVID-19 (kidneys, lungs, aorta and heart) in mice with adenine-induced CKD. Results: Twenty genes were differentially expressed in at least one organ in mice with CKD. For 15 genes, the differential expression would be expected to favor SARS-CoV-2 infection and/or severity. Of these 15 genes, 13 were differentially expressed in the kidney and 8 were validated in human CKD kidney transcriptomics datasets, including those for the most common cause of CKD, diabetic nephropathy. Two genes reported to protect from SARS-CoV-2 were downregulated in at least two non-kidney target organs: Ifitm3 encoding interferon-induced transmembrane protein 3 (IFITM3) in lung and Ly6e encoding lymphocyte antigen 6 family member 6 (LY6E) in aorta. Conclusion: CKD, including diabetic CKD, is associated with the differential expression of multiple SCARF genes in target organs of COVID-19, some of which may sensitize to SARS-CoV-2 infection. This information may facilitate developing therapeutic strategies aimed at decreasing COVID-19 severity in patients with CKD.

4.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958836

RESUMEN

Fabry disease is a lysosomal disease characterized by globotriaosylceramide (Gb3) accumulation. It may coexist with diabetes mellitus and both cause potentially lethal kidney end-organ damage. However, there is little information on their interaction with kidney disease. We have addressed the interaction between Fabry disease and diabetes in data mining of human kidney transcriptomics databases and in Fabry (Gla-/-) and wild type mice with or without streptozotocin-induced diabetes. Data mining was consistent with differential expression of genes encoding enzymes from the Gb3 metabolic pathway in human diabetic kidney disease, including upregulation of UGCG, the gene encoding the upstream and rate-limiting enzyme glucosyl ceramide synthase. Diabetic Fabry mice displayed the most severe kidney infiltration by F4/80+ macrophages, and a lower kidney expression of kidney protective genes (Pgc1α and Tfeb) than diabetic wild type mice, without a further increase in kidney fibrosis. Moreover, only diabetic Fabry mice developed kidney insufficiency and these mice with kidney insufficiency had a high expression of Ugcg. In conclusion, we found evidence of interaction between diabetes and Fabry disease that may increase the severity of the kidney phenotype through modulation of the Gb3 synthesis pathway and downregulation of kidney protective genes.


Asunto(s)
Diabetes Mellitus , Enfermedad de Fabry , Enfermedades Renales , Insuficiencia Renal , Humanos , Ratones , Animales , Enfermedad de Fabry/metabolismo , Factores Protectores , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Insuficiencia Renal/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/genética
5.
Kidney Int ; 103(4): 686-701, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36565807

RESUMEN

Increased expression of AP-1 transcription factor components has been reported in acute kidney injury (AKI). However, the role of specific components, such as Fosl1, in tubular cells or AKI is unknown. Upstream regulator analysis of murine nephrotoxic AKI transcriptomics identified AP-1 as highly upregulated. Among AP-1 canonical components, Fosl1 was found to be upregulated in two transcriptomics datasets from nephrotoxic murine AKI induced by folic acid or cisplatin and from proximal tubular cells exposed to TWEAK, a cytokine mediator of AKI. Fosl1 was minimally expressed in the kidneys of control uninjured mice. Increased Fosl1 protein was localized to proximal tubular cell nuclei in AKI. In human AKI, FOSL1 was found present in proximal tubular cells in kidney sections and in urine along with increased urinary FOSL1 mRNA. Selective Fosl1 deficiency in proximal tubular cells (Fosl1Δtub) increased the severity of murine cisplatin- or folate-induced AKI as characterized by lower kidney function, more severe kidney inflammation and Klotho downregulation. Indeed, elevated AP-1 activity was observed after cisplatin-induced AKI in Fosl1Δtub mice compared to wild-type mice. More severe Klotho downregulation preceded more severe kidney dysfunction. The Klotho promoter was enriched in Fosl1 binding sites and Fosl1 bound to the Klotho promoter in cisplatin-AKI. In cultured proximal tubular cells, Fosl1 targeting increased the proinflammatory response and downregulated Klotho. In vivo, recombinant Klotho administration protected Fosl1Δtub mice from cisplatin-AKI. Thus, increased proximal tubular Fosl1 expression during AKI is an adaptive response, preserves Klotho, and limits the severity of tubular cell injury and AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Animales , Humanos , Ratones , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Células Cultivadas , Cisplatino/toxicidad , Riñón/metabolismo , Ratones Endogámicos C57BL , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Proteínas Klotho/metabolismo
6.
Hepatology ; 77(3): 874-887, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35592906

RESUMEN

Obesity features excessive fat accumulation in several body tissues and induces a state of chronic low-grade inflammation that contributes to the development of diabetes, steatosis, and insulin resistance. Recent research has shown that this chronic inflammation is crucially dependent on p38 pathway activity in macrophages, suggesting p38 inhibition as a possible treatment for obesity comorbidities. Nevertheless, we report here that lack of p38 activation in myeloid cells worsens high-fat diet-induced obesity, diabetes, and steatosis. Deficient p38 activation increases macrophage IL-12 production, leading to inhibition of hepatic FGF21 and reduction of thermogenesis in the brown fat. The implication of FGF21 in the phenotype was confirmed by its specific deletion in hepatocytes. We also found that IL-12 correlates with liver damage in human biopsies, indicating the translational potential of our results. Our findings suggest that myeloid p38 has a dual role in inflammation and that drugs targeting IL-12 might improve the homeostatic regulation of energy balance in response to metabolic stress.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Humanos , Animales , Ratones , Interleucina-12 , Obesidad/metabolismo , Hígado Graso/metabolismo , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Inflamación/metabolismo , Dieta Alta en Grasa , Macrófagos/metabolismo , Termogénesis , Ratones Endogámicos C57BL
7.
PLoS Biol ; 19(11): e3001447, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758018

RESUMEN

During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.


Asunto(s)
Glucógeno Sintasa/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , Miocardio/enzimología , Animales , Animales Recién Nacidos , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Dieta Alta en Grasa , Activación Enzimática , Conducta Alimentaria , Femenino , Eliminación de Gen , Intolerancia a la Glucosa/enzimología , Glucógeno/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Especificidad de Órganos , Fosforilación
8.
Elife ; 92020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33287957

RESUMEN

Liver metabolism follows diurnal fluctuations through the modulation of molecular clock genes. Disruption of this molecular clock can result in metabolic disease but its potential regulation by immune cells remains unexplored. Here, we demonstrated that in steady state, neutrophils infiltrated the mouse liver following a circadian pattern and regulated hepatocyte clock-genes by neutrophil elastase (NE) secretion. NE signals through c-Jun NH2-terminal kinase (JNK) inhibiting fibroblast growth factor 21 (FGF21) and activating Bmal1 expression in the hepatocyte. Interestingly, mice with neutropenia, defective neutrophil infiltration or lacking elastase were protected against steatosis correlating with lower JNK activation, reduced Bmal1 and increased FGF21 expression, together with decreased lipogenesis in the liver. Lastly, using a cohort of human samples we found a direct correlation between JNK activation, NE levels and Bmal1 expression in the liver. This study demonstrates that neutrophils contribute to the maintenance of daily hepatic homeostasis through the regulation of the NE/JNK/Bmal1 axis.


Every day, the body's biological processes work to an internal clock known as the circadian rhythm. This rhythm is controlled by 'clock genes' that are switched on or off by daily physical and environmental cues, such as changes in light levels. These daily rhythms are very finely tuned, and disturbances can lead to serious health problems, such as diabetes or high blood pressure. The ability of the body to cycle through the circadian rhythm each day is heavily influenced by the clock of one key organ: the liver. This organ plays a critical role in converting food and drink into energy. There is evidence that neutrophils ­ white blood cells that protect the body by being the first response to inflammation ­ can influence how the liver performs its role in obese people, by for example, releasing a protein called elastase. Additionally, the levels of neutrophils circulating in the blood change following a daily pattern. Crespo, González-Terán et al. wondered whether neutrophils enter the liver at specific times of the day to control liver's daily rhythm. Crespo, González-Terán et al. revealed that neutrophils visit the liver in a pattern that peaks when it gets light and dips when it gets dark by counting the number of neutrophils in the livers of mice at different times of the day. During these visits, neutrophils secreted elastase, which activated a protein called JNK in the cells of the mice's liver. This subsequently blocked the activity of another protein, FGF21, which led to the activation of the genes that allow cells to make fat molecules for storage. JNK activation also switched on the clock gene, Bmal1, ultimately causing fat to build up in the mice's liver. Crespo, González-Terán et al. also found that, in samples from human livers, the levels of elastase, the activity of JNK, and whether the Bmal1 gene was switched on were tightly linked. This suggests that neutrophils may be controlling the liver's rhythm in humans the same way they do in mice. Overall, this research shows that neutrophils can control and reset the liver's daily rhythm using a precisely co-ordinated series of molecular changes. These insights into the liver's molecular clock suggest that elastase, JNK and BmaI1 may represent new therapeutic targets for drugs or smart medicines to treat metabolic diseases such as diabetes or high blood pressure.


Asunto(s)
Proteínas CLOCK/metabolismo , Regulación de la Expresión Génica/fisiología , Hepatocitos/metabolismo , Neutrófilos/fisiología , Animales , Proteínas CLOCK/genética , Células Cultivadas , Ritmo Circadiano , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Inflamación/metabolismo , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Ratones , Ratones Transgénicos , Neutropenia
9.
Nature ; 568(7753): 557-560, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971822

RESUMEN

The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.


Asunto(s)
Carcinogénesis/patología , Ciclo Celular , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/patología , Hígado/enzimología , Hígado/patología , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Anciano , Animales , Carcinogénesis/efectos de los fármacos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Hepatocitos/citología , Hepatocitos/patología , Humanos , Hígado/cirugía , Neoplasias Hepáticas/inducido químicamente , Masculino , Ratones , Persona de Mediana Edad , Proteína Quinasa 12 Activada por Mitógenos/antagonistas & inhibidores , Fosforilación , Piridonas/farmacología , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Homología de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA