Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2767: 1-18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37351840

RESUMEN

Under certain culture conditions, naive human pluripotent stem cells can generate human blastocyst-like structures (called human blastoids). Human blastoids serve as an accessible model for human blastocysts and are amenable for large-scale production. Here, we describe a detailed step-by-step protocol for the robust and high-efficient generation of human blastoids from naive human pluripotent stem cells.


Asunto(s)
Células Madre Pluripotentes , Humanos , Blastocisto , Diferenciación Celular
2.
Cell Stem Cell ; 30(9): 1246-1261.e9, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683605

RESUMEN

Recent advances in human blastoids have opened new avenues for modeling early human development and implantation. One limitation of our first protocol for human blastoid generation was relatively low efficiency. We now report an optimized protocol for the efficient generation of large quantities of high-fidelity human blastoids from naive pluripotent stem cells. This enabled proteomics analysis that identified phosphosite-specific signatures potentially involved in the derivation and/or maintenance of the signaling states in human blastoids. Additionally, we uncovered endometrial stromal effects in promoting trophoblast cell survival, proliferation, and syncytialization during co-culture with blastoids and blastocysts. Side-by-side single-cell RNA sequencing revealed similarities and differences in transcriptome profiles between pre-implantation blastoids and blastocysts, as well as post-implantation cultures, and uncovered a population resembling early migratory trophoblasts during co-culture with endometrial stromal cells. Our optimized protocol will facilitate broader use of human blastoids as an accessible, perturbable, scalable, and tractable model for human blastocysts.


Asunto(s)
Implantación del Embrión , Transducción de Señal , Humanos , Blastocisto , Supervivencia Celular , Trofoblastos
3.
Cell ; 186(18): 3776-3792.e16, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37478861

RESUMEN

In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.


Asunto(s)
Implantación del Embrión , Gastrulación , Células Madre Pluripotentes , Animales , Femenino , Humanos , Embarazo , Diferenciación Celular , Embrión de Mamíferos , Desarrollo Embrionario , Organogénesis , Células Madre Pluripotentes/metabolismo , Primates
4.
Methods Mol Biol ; 2677: 269-280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37464248

RESUMEN

Dynamic pluripotent stem cell (PSC) states are in vitro adaptations of the pluripotency continuum in vivo. Previous studies have generated a number of PSCs with distinct properties. By modulating the FGF, TGF-ß, and WNT pathways, we have derived intermediate PSCs (FTW-PSCs) that are permissive for direct primordial germ cell-like cell (PGC-LC) induction in vitro. Here, we describe the method for derivation and maintenance of mouse and human FTW-PSCs, as well as PGC-LC induction from FTW-PSCs.


Asunto(s)
Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/metabolismo , Células Germinativas/metabolismo , Diferenciación Celular
5.
Cell Stem Cell ; 30(5): 611-616.e7, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146582

RESUMEN

Understanding the mechanisms of blastocyst formation and implantation is critical for improving farm animal reproduction but is hampered by a limited supply of embryos. Here, we developed an efficient method to generate bovine blastocyst-like structures (termed blastoids) via assembling bovine trophoblast stem cells and expanded potential stem cells. Bovine blastoids resemble blastocysts in morphology, cell composition, single-cell transcriptomes, in vitro growth, and the ability to elicit maternal recognition of pregnancy following transfer to recipient cows. Bovine blastoids represent an accessible in vitro model for studying embryogenesis and improving reproductive efficiency in livestock species.


Asunto(s)
Blastocisto , Trofoblastos , Embarazo , Femenino , Bovinos , Animales , Implantación del Embrión , Desarrollo Embrionario , Células Madre , Técnicas de Cultivo de Célula
6.
Cell Rep ; 42(5): 112439, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37146606

RESUMEN

Here, we report that a chemical cocktail (LCDM: leukemia inhibitory factor [LIF], CHIR99021, dimethinedene maleate [DiM], minocycline hydrochloride), previously developed for extended pluripotent stem cells (EPSCs) in mice and humans, enables de novo derivation and long-term culture of bovine trophoblast stem cells (TSCs). Bovine TSCs retain developmental potency to differentiate into mature trophoblast cells and exhibit transcriptomic and epigenetic (chromatin accessibility and DNA methylome) features characteristic of trophectoderm cells from early bovine embryos. The bovine TSCs established in this study will provide a model to study bovine placentation and early pregnancy failure.


Asunto(s)
Células Madre Pluripotentes , Trofoblastos , Embarazo , Humanos , Femenino , Animales , Bovinos , Ratones , Diferenciación Celular/genética , Placentación
7.
Nature ; 592(7853): 272-276, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33508854

RESUMEN

Cell competition involves a conserved fitness-sensing process during which fitter cells eliminate neighbouring less-fit but viable cells1. Cell competition has been proposed as a surveillance mechanism to ensure normal development and tissue homeostasis, and has also been suggested to act as a barrier to interspecies chimerism2. However, cell competition has not been studied in an interspecies context during early development owing to the lack of an in vitro model. Here we developed an interspecies pluripotent stem cell (PSC) co-culture strategy and uncovered a previously unknown mode of cell competition between species. Interspecies competition between PSCs occurred in primed but not naive pluripotent cells, and between evolutionarily distant species. By comparative transcriptome analysis, we found that genes related to the NF-κB signalling pathway, among others, were upregulated in less-fit 'loser' human cells. Genetic inactivation of a core component (P65, also known as RELA) and an upstream regulator (MYD88) of the NF-κB complex in human cells could overcome the competition between human and mouse PSCs, thereby improving the survival and chimerism of human cells in early mouse embryos. These insights into cell competition pave the way for the study of evolutionarily conserved mechanisms that underlie competitive cell interactions during early mammalian development. Suppression of interspecies PSC competition may facilitate the generation of human tissues in animals.


Asunto(s)
Competencia Celular/fisiología , Quimerismo , Técnicas de Cocultivo/métodos , Embrión de Mamíferos/citología , Células Madre Pluripotentes/citología , Animales , Recuento de Células , Supervivencia Celular , Femenino , Humanos , Masculino , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Especificidad de la Especie , Factor de Transcripción ReIA/metabolismo
8.
Cell Stem Cell ; 28(3): 550-567.e12, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33271070

RESUMEN

Dynamic pluripotent stem cell (PSC) states are in vitro adaptations of pluripotency continuum in vivo. Previous studies have generated a number of PSCs with distinct properties. To date, however, no known PSCs have demonstrated dual competency for chimera formation and direct responsiveness to primordial germ cell (PGC) specification, a unique functional feature of formative pluripotency. Here, by modulating fibroblast growth factor (FGF), transforming growth factor ß (TGF-ß), and WNT pathways, we derived PSCs from mice, horses, and humans (designated as XPSCs) that are permissive for direct PGC-like cell induction in vitro and are capable of contributing to intra- or inter-species chimeras in vivo. XPSCs represent a pluripotency state between naive and primed pluripotency and harbor molecular, cellular, and phenotypic features characteristic of formative pluripotency. XPSCs open new avenues for studying mammalian pluripotency and dissecting the molecular mechanisms governing PGC specification. Our method may be broadly applicable for the derivation of analogous stem cells from other mammalian species.


Asunto(s)
Células Madre Pluripotentes , Animales , Diferenciación Celular , Quimera , Células Germinativas , Caballos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...