Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Curr Drug Targets ; 23(6): 597-605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34254912

RESUMEN

Fatty acid binding protein A (A-FABP) is one of FABPs isoforms found mainly in adipose tissue and macrophages. It works through many integrated pathways, regulating inflammation and lipid metabolism, promoting glucose production, impairing insulin function, and contributing to diseases such as atherosclerosis and diabetes. A-FABP is upregulated in the adipose tissue of obese patients and its increased release into the bloodstream is positively associated with body mass index. Consequently, A-FABP plays a key role in regulating metabolism in obese people. Recent studies in mouse models and humans demonstrated the role of A-FABP in increasing the risk of obesity-related cancers. Here we summarized the state of research on the link between obesity, cancer and A-FABP as a new potential therapeutic target for the treatment of obesity - associated cancers.


Asunto(s)
Neoplasias , Obesidad , Adipocitos/metabolismo , Tejido Adiposo , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/uso terapéutico , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
2.
Mol Cell Endocrinol ; 538: 111448, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34480991

RESUMEN

Crohn's disease (CD) is an inflammatory bowel disease (IBD) which is characterized by chronic and relapsing inflammation of the gastrointestinal (GI) tract. The etiology of CD is unknown, but factors such as epithelial barrier dysfunction, immune system imbalance, microbiota dysbiosis and environmental influences are thought to be involved in its pathogenesis. Recent studies have shown that short chain fatty acids (SCFAs) and long chain fatty acids (LCFAs) play a vital role in pathophysiology and development of CD by various mechanisms affecting pro- and anti-inflammatory mediators, and maintaining the intestinal homeostasis and regulation of gene expression. SCFAs and LCFAs activate signaling cascades that control immune functions through interaction with cell surface free fatty acid receptors (FFARs), i.e. FFAR1, FFAR2, FFAR3, and FFAR4. This review highlights the role of fatty acids in maintenance of intestinal and immune homeostasis and supports the supplementation of fatty acids as a promising adjunctive treatment for CD.


Asunto(s)
Enfermedad de Crohn/metabolismo , Ácidos Grasos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Regulación de la Expresión Génica , Homeostasis , Humanos , Intestinos/metabolismo , Transducción de Señal
3.
Eur J Med Chem ; 224: 113694, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34273660

RESUMEN

The glycosylphosphatidylinositol-anchored transmembrane glycoprotein CD160 (cluster of differentiation 160) is a member of the immunoglobulin superfamily. Four isoforms, which differ by the presence or absence of an immunoglobulin-like domain and the mode of anchoring in the cell membrane, have been identified. CD160 has a significant impact on the proper functioning of the immune system by activating natural killer cells and inhibiting T cells. CD160 is a natural ligand for herpes virus entry mediator (HVEM), a member of the tumor necrosis factor superfamily. The CD160-HVEM complex is a rare example of direct interaction between the two different superfamilies. The interaction of these two proteins leads to the inhibition of CD4+ T cells which, in consequence, leads to the inhibition of the correct response of the immune system. Available research articles indicate that CD160 plays a role in various types of cancer, chronic viral diseases, malaria, paroxysmal nocturnal hemoglobinuria, atherosclerosis, autoimmune diseases, skin inflammation, acute liver damage and retinal vascular disease. We present here an overview of the CD160 protein, the general characteristics of the receptor and its isoforms, details of structural studies of CD160 and the CD160-HVEM complex, as well as a description of the role of this protein in selected human diseases.


Asunto(s)
Antígenos CD/inmunología , Enfermedades Autoinmunes/inmunología , Infecciones/inmunología , Neoplasias/inmunología , Receptores Inmunológicos/inmunología , Proteínas Ligadas a GPI/inmunología , Humanos
4.
Pharmacol Res ; 163: 105243, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080322

RESUMEN

Nrf2 (nuclear factor erythroid 2-related factor 2) is a stress-responsive transcription factor, associated with cellular homeostasis. Under normal conditions Nrf2 is kept in the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1) which facilitates its degradation. Meanwhile, oxidative or electrophilic stress trigger Keap1 dissociation from the Nrf2/Keap1 complex and Nrf2 translocation to the nucleus where it induces the expression of numerous anti-oxidative and anti-inflammatory genes. The Nrf2/Keap1 axis plays a crucial role in the development of gastrointestinal (GI) tract and the maintenance of its proper functionality. This axis also seems to be a promising candidate for prevention of inflammatory bowel diseases (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), as well as their severe complications such as intestinal fibrosis and colorectal cancer. This review focuses on the role of Nrf2/Keap1 in 1) the development and proper functionality of GI tract, 2) the pathophysiology of GI diseases and their long-term complications, 3) the effectiveness of currently used drugs and non-conventional treatments which influence Nrf2/Keap1 and are potentially effective in IBD treatment, as well as 4) the effect of gut microbiota on Nrf2/Keap1 pathway in IBD.


Asunto(s)
Enfermedades Inflamatorias del Intestino/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Neoplasias Colorrectales/metabolismo , Fibrosis , Microbioma Gastrointestinal , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/microbiología , Intestinos/microbiología , Intestinos/patología , Intestinos/fisiología , Proteína 1 Asociada A ECH Tipo Kelch/química , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/química
5.
Antibiotics (Basel) ; 9(9)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957637

RESUMEN

As small, mobilizable replicons with a broad host range, IncQ plasmids are widely distributed among clinical and environmental bacteria. They carry antibiotic resistance genes, and it has been shown that they confer resistance to ß-lactams, fluoroquinolones, aminoglycosides, trimethoprim, sulphonamides, and tetracycline. The previously proposed classification system divides the plasmid group into four subgroups, i.e., IncQ-1, IncQ-2, IncQ-3, and IncQ-4. The last two subgroups have been poorly described so far. The aim of this study was to analyze five newly identified IncQ-3 plasmids isolated from a wastewater treatment plant in Poland and to compare them with all known plasmids belonging to the IncQ-3 subgroup whose sequences were retrieved from the NCBI database. The complete nucleotide sequences of the novel plasmids were annotated and bioinformatic analyses were performed, including identification of core genes and auxiliary genetic load. Furthermore, functional experiments testing plasmid mobility were carried out. Phylogenetic analysis based on three core genes (repA, mobA/repB, and mobC) revealed the presence of three main clusters of IncQ-3 replicons. Apart from having a highly conserved core, the analyzed IncQ-3 plasmids were vectors of antibiotic resistance genes, including (I) the qnrS2 gene that encodes fluoroquinolone resistance and (II) ß-lactam, trimethoprim, and aminoglycoside resistance genes within integron cassettes.

6.
Insects ; 11(9)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961876

RESUMEN

Research on the fauna of beetles (Coleoptera) of the Canary Islands has a long tradition, which enables tracking changes in their species composition and arrival of new species. In this paper, we provide new faunistic data on the ladybird beetles (Coccinellidae) recorded on Gran Canaria, one of the central islands of the archipelago, and then analyze available information on the Gran Canarian ladybird fauna from geographical and historical points of view. The field survey resulted in recording 1402 ladybird individuals belonging to 30 species. Ten of these species were new to Gran Canaria and three of them, Chilocorus bipustulatus (Linnaeus), Nephus bisignatus (Boheman), and Nephus ulbrichi Fürsch, had not previously been reported to be on any of the islands of the Canarian archipelago. Tetrabrachys tinerfensis (Hodgson) is synonymized with T. deserticola (Wollaston). Our survey and literature reports allowed us to recognize 42 species of Coccinellidae so far recorded on Gran Canaria. Seventeen of them (40%) belonged to the Canarian endemic and subendemic species, and 21 (50%) were newcomers and presumed newcomers. Colonization of Gran Canaria and other islands of the archipelago by ladybird species of various origins seems to be a frequent phenomenon that may pose a threat to the unique communities of the native Canarian species.

7.
Postepy Biochem ; 65(4): 313-317, 2020 Jan 04.
Artículo en Polaco | MEDLINE | ID: mdl-31945286

RESUMEN

Inflammatory bowel diseases (IBD) are chronic conditions that lead to serious complications and act to the detriment of quality of patients' lives. Etiology of IBD has not been precisely determined but it is assumed that IBD is caused by genetic, immune and environmental factors. The main target in current IBD treatment is the induction and maintenance of remission. The most common strategy in IBD therapy is called "step-up" that is based on gradual introduction of stronger drugs. However, the latest research shows that "top down" strategy is more promising and can change the natural course of the disease. The aim of this article is to discuss both strategies and compare their effectiveness.


Asunto(s)
Enfermedad de Crohn/terapia , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Humanos
8.
Front Microbiol ; 9: 2026, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233517

RESUMEN

Bacterial surface polysaccharides play significant roles in fitness and virulence. In Gram-negative bacteria such as Escherichia coli, major surface polysaccharides are lipopolysaccharide (LPS) and capsule, representing O- and K-antigens, respectively. There are multiple combinations of O:K types, many of which are well-characterized and can be related to ecotype or pathotype. In this investigation, we have identified a novel O:K permutation resulting through a process of major genome reorganization in a clade of E. coli. A multidrug-resistant, extended-spectrum ß-lactamase (ESBL)-producing strain - E. coli 26561 - represented a prototype of strains combining a locus variant of O89 and group 1 capsular polysaccharide. Specifically, the variant O89 locus in this strain was truncated at gnd, flanked by insertion sequences and located between nfsB and ybdK and we apply the term O89m for this variant. The prototype lacked colanic acid and O-antigen loci between yegH and hisI with this tandem polysaccharide locus being replaced with a group 1 capsule (G1C) which, rather than being a recognized E. coli capsule type, this locus matched to Klebsiella K10 capsule type. A genomic survey identified more than 200 E. coli strains which possessed the O89m locus variant with one of a variety of G1C types. Isolates from our collection with the combination of O89m and G1C all displayed a mucoid phenotype and E. coli 26561 was unusual in exhibiting a mucoviscous phenotype more recognized as a characteristic among Klebsiella strains. Despite the locus truncation and novel location, all O89m:G1C strains examined showed a ladder pattern typifying smooth LPS and also showed high molecular weight, alcian blue-staining polysaccharide in cellular and/or extra-cellular fractions. Expression of both O-antigen and capsule biosynthesis loci were confirmed in prototype strain 26561 through quantitative proteome analysis. Further in silico exploration of more than 200 E. coli strains possessing the O89m:G1C combination identified a very high prevalence of multidrug resistance (MDR) - 85% possessed resistance to three or more antibiotic classes and a high proportion (58%) of these carried ESBL and/or carbapenemase. The increasing isolation of O89m:G1C isolates from extra-intestinal infection sites suggests that these represents an emergent clade of invasive, MDR E. coli.

9.
Evol Appl ; 11(3): 350-363, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29632553

RESUMEN

To manage emerging forest diseases and prevent their occurrence in the future, it is essential to determine the origin(s) of the pathogens involved and identify the management practices that have ultimately caused disease problems. One such practice is the widespread planting of exotic tree species within the range of related native taxa. This can lead to emerging forest disease both by facilitating introduction of exotic pathogens and by providing susceptible hosts on which epidemics of native pathogens can develop. We used microsatellite markers to determine the origins of the pathogen Dothistroma septosporum responsible for the current outbreak of Dothistroma needle blight (DNB) on native Caledonian Scots pine (Pinus sylvestris) populations in Scotland and evaluated the role played by widespread planting of two exotic pine species in the development of the disease outbreak. We distinguished three races of D. septosporum in Scotland, one of low genetic diversity associated with introduced lodgepole pine (Pinus contorta), one of high diversity probably derived from the DNB epidemic on introduced Corsican pine (Pinus nigra subsp. laricio) in England and a third of intermediate diversity apparently endemic on Caledonian Scots pine. These races differed for both growth rate and exudate production in culture. Planting of exotic pine stands in the UK appears to have facilitated the introduction of two exotic races of D. septosporum into Scotland which now pose a threat to native Caledonian pines both directly and through potential hybridization and introgression with the endemic race. Our results indicate that both removal of exotic species from the vicinity of Caledonian pine populations and restriction of movement of planting material are required to minimize the impact of the current DNB outbreak. They also demonstrate that planting exotic species that are related to native species reduces rather than enhances the resilience of forests to pathogens.

10.
Front Microbiol ; 8: 863, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28559885

RESUMEN

Members of the genus Aeromonas that commonly occur in various aquatic ecosystems are taken into account as vectors spreading antibiotic resistance genes (ARGs) in the environment. In our study strains of Aeromonas spp. (n = 104) not susceptible to ampicillin were isolated from municipal sewage of different levels of purification - raw sewage, activated sludge and treated wastewater. The crucial step of the study was the identification of ß-lactamase resistance genes. The identified genes encode ß-lactamases from 14 families - blaTEM, blaOXA, blaSHV, blaCTX-M, blaMOX, blaACC, blaFOX, blaGES, blaPER, blaV EB, blaKPC, cphA, imiH, and cepH. There were no significant differences in number of identified ARGs between isolation points. BlaOXA, blaFOX variants and, characteristic for Aeromonas genus, metallo-ß-lactamase cphA-related genes were the most commonly identified types of ß-lactam resistance determinants. Moreover, we found four extended-spectrum ß-lactamases (blaSHV -11, blaCTX-M-27, blaCTX-M-98, and blaPER-4) - and seven AmpC (blaACC, blaFOX-2-like, blaFOX-3, blaFOX-4-like, blaFOX-9, blaFOX-10-like, and blaFOX-13-like) types and variants of genes that had never been found among Aeromonas spp. before. Five of the ß-lactamases families (blaTEM, blaOXA, blaFOX, blaV EB, and cphA) were identified in all three isolation sites, which supports the hypothesis that wastewater treatment plants (WWTPs) are hot spots of ARGs dissemination. The obtained ARGs sequences share high identity with previously described ß-lactamases, but new variants of those genes have to be considered as well. Characterization of antibiotic susceptibility was performed using disk the diffusion method with 12 different antibiotics according to CLSI guidelines. Over 60% of the strains are unsusceptible to cefepime and chloramphenicol and the majority of the strains have a multidrug resistance phenotype (68%). Finally, analysis of plasmid profiles among the resistant strains showed that 62% of the isolates from all three points of the WWTP carry plasmids of different sizes. Among some of the isolated plasmids blaFOX-4-like and blaGES genes have been found. To sum up, the results strongly suggest that Aeromonas spp. can be considered as agents of antibiotic resistance dissemination from wastewater to the natural environment.

11.
Pest Manag Sci ; 73(6): 1187-1196, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27644008

RESUMEN

BACKGROUND: Ramularia collo-cygni (Rcc) is responsible for Ramularia leaf spot (RLS), a foliar disease of barley contributing to serious economic losses. Protection against the disease has been almost exclusively based on fungicide applications, including succinate dehydrogenase inhibitors (SDHIs). In 2015, the first field isolates of Rcc with reduced sensitivity to SDHIs were recorded in some European countries. In this study we established baseline sensitivity of Rcc to SDHIs in the United Kingdom and characterised mutations correlating with resistance to SDHIs in UV-generated mutants. RESULTS: Five SDHI-resistant isolates were generated by UV mutagenesis. In four of these mutants a single amino acid change in a target succinate dehydrogenase (Sdh) protein was associated with decrease in sensitivity to SDHIs. Three of these mutations were stably inherited in the absence of SDHI fungicide, and resistant isolates did not demonstrate a fitness penalty. There were no detectable declines in sensitivity in field populations in the years 2010-2012 in the United Kingdom. CONCLUSIONS: SDHIs remained effective in controlling Rcc in the United Kingdom in the years 2010-2012. However, given that the first isolates of Rcc with reduced sensitivity appeared in other European countries in 2015, robust antiresistance strategies need to be continuously implemented to maintain effective disease control. © 2016 Society of Chemical Industry.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/genética , Farmacorresistencia Fúngica/genética , Fungicidas Industriales , Succinato Deshidrogenasa/genética , Hordeum/microbiología , Mutación , Enfermedades de las Plantas/microbiología , Hojas de la Planta , Succinato Deshidrogenasa/antagonistas & inhibidores , Reino Unido
12.
Front Microbiol ; 6: 494, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074893

RESUMEN

The mobilome is a pool of genes located within mobile genetic elements (MGE), such as plasmids, IS elements, transposons, genomic/pathogenicity islands, and integron-associated gene cassettes. These genes are often referred to as "flexible" and may encode virulence factors, toxic compounds as well as resistance to antibiotics. The phenomenon of MGE transfer between bacteria, known as horizontal gene transfer (HGT), is well documented. The genes present on MGE are subject to continuous processes of evolution and environmental changes, largely induced or significantly accelerated by man. For bacteria, the only chance of survival in an environment contaminated with toxic chemicals, heavy metals and antibiotics is the acquisition of genes providing the ability to survive in such conditions. The process of acquiring and spreading antibiotic resistance genes (ARG) is of particular significance, as it is important for the health of humans and animals. Therefore, it is important to thoroughly study the mobilome of Aeromonas spp. that is widely distributed in various environments, causing many diseases in fishes and humans. This review discusses the recently published information on MGE prevalent in Aeromonas spp. with special emphasis on plasmids belonging to different incompatibility groups, i.e., IncA/C, IncU, IncQ, IncF, IncI, and ColE-type. The vast majority of plasmids carry a number of different transposons (Tn3, Tn21, Tn1213, Tn1721, Tn4401), the 1st, 2nd, or 3rd class of integrons, IS elements (e.g., IS26, ISPa12, ISPa13, ISKpn8, ISKpn6) and encode determinants such as antibiotic and mercury resistance genes, as well as virulence factors. Although the actual role of Aeromonas spp. as a human pathogen remains controversial, species of this genus may pose a serious risk to human health. This is due to the considerable potential of their mobilome, particularly in terms of antibiotic resistance and the possibility of the horizontal transfer of resistance genes.

13.
Phytopathology ; 105(7): 895-904, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25626073

RESUMEN

Ramularia collo-cygni is the biotic factor responsible for the disease Ramularia leaf spot (RLS) of barley (Hordeum vulgare). Despite having been described over 100 years ago and being considered a minor disease in some countries, the fungus is attracting interest in the scientific community as a result of the increasing number of recorded economically damaging disease epidemics. New reports of disease spread and fungal identification using molecular diagnostics have helped redefine RLS as a global disease. This review describes recent developments in our understanding of the biology and epidemiology of the fungus, outlines advances made in the field of the genetics of both the fungus and host, and summarizes the control strategies currently available.


Asunto(s)
Ascomicetos/fisiología , Hordeum/microbiología , Hordeum/genética , Interacciones Huésped-Patógeno , Control de Plagas , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA