Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 9: 2026, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233517

RESUMEN

Bacterial surface polysaccharides play significant roles in fitness and virulence. In Gram-negative bacteria such as Escherichia coli, major surface polysaccharides are lipopolysaccharide (LPS) and capsule, representing O- and K-antigens, respectively. There are multiple combinations of O:K types, many of which are well-characterized and can be related to ecotype or pathotype. In this investigation, we have identified a novel O:K permutation resulting through a process of major genome reorganization in a clade of E. coli. A multidrug-resistant, extended-spectrum ß-lactamase (ESBL)-producing strain - E. coli 26561 - represented a prototype of strains combining a locus variant of O89 and group 1 capsular polysaccharide. Specifically, the variant O89 locus in this strain was truncated at gnd, flanked by insertion sequences and located between nfsB and ybdK and we apply the term O89m for this variant. The prototype lacked colanic acid and O-antigen loci between yegH and hisI with this tandem polysaccharide locus being replaced with a group 1 capsule (G1C) which, rather than being a recognized E. coli capsule type, this locus matched to Klebsiella K10 capsule type. A genomic survey identified more than 200 E. coli strains which possessed the O89m locus variant with one of a variety of G1C types. Isolates from our collection with the combination of O89m and G1C all displayed a mucoid phenotype and E. coli 26561 was unusual in exhibiting a mucoviscous phenotype more recognized as a characteristic among Klebsiella strains. Despite the locus truncation and novel location, all O89m:G1C strains examined showed a ladder pattern typifying smooth LPS and also showed high molecular weight, alcian blue-staining polysaccharide in cellular and/or extra-cellular fractions. Expression of both O-antigen and capsule biosynthesis loci were confirmed in prototype strain 26561 through quantitative proteome analysis. Further in silico exploration of more than 200 E. coli strains possessing the O89m:G1C combination identified a very high prevalence of multidrug resistance (MDR) - 85% possessed resistance to three or more antibiotic classes and a high proportion (58%) of these carried ESBL and/or carbapenemase. The increasing isolation of O89m:G1C isolates from extra-intestinal infection sites suggests that these represents an emergent clade of invasive, MDR E. coli.

2.
Evol Appl ; 11(3): 350-363, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29632553

RESUMEN

To manage emerging forest diseases and prevent their occurrence in the future, it is essential to determine the origin(s) of the pathogens involved and identify the management practices that have ultimately caused disease problems. One such practice is the widespread planting of exotic tree species within the range of related native taxa. This can lead to emerging forest disease both by facilitating introduction of exotic pathogens and by providing susceptible hosts on which epidemics of native pathogens can develop. We used microsatellite markers to determine the origins of the pathogen Dothistroma septosporum responsible for the current outbreak of Dothistroma needle blight (DNB) on native Caledonian Scots pine (Pinus sylvestris) populations in Scotland and evaluated the role played by widespread planting of two exotic pine species in the development of the disease outbreak. We distinguished three races of D. septosporum in Scotland, one of low genetic diversity associated with introduced lodgepole pine (Pinus contorta), one of high diversity probably derived from the DNB epidemic on introduced Corsican pine (Pinus nigra subsp. laricio) in England and a third of intermediate diversity apparently endemic on Caledonian Scots pine. These races differed for both growth rate and exudate production in culture. Planting of exotic pine stands in the UK appears to have facilitated the introduction of two exotic races of D. septosporum into Scotland which now pose a threat to native Caledonian pines both directly and through potential hybridization and introgression with the endemic race. Our results indicate that both removal of exotic species from the vicinity of Caledonian pine populations and restriction of movement of planting material are required to minimize the impact of the current DNB outbreak. They also demonstrate that planting exotic species that are related to native species reduces rather than enhances the resilience of forests to pathogens.

3.
Pest Manag Sci ; 73(6): 1187-1196, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27644008

RESUMEN

BACKGROUND: Ramularia collo-cygni (Rcc) is responsible for Ramularia leaf spot (RLS), a foliar disease of barley contributing to serious economic losses. Protection against the disease has been almost exclusively based on fungicide applications, including succinate dehydrogenase inhibitors (SDHIs). In 2015, the first field isolates of Rcc with reduced sensitivity to SDHIs were recorded in some European countries. In this study we established baseline sensitivity of Rcc to SDHIs in the United Kingdom and characterised mutations correlating with resistance to SDHIs in UV-generated mutants. RESULTS: Five SDHI-resistant isolates were generated by UV mutagenesis. In four of these mutants a single amino acid change in a target succinate dehydrogenase (Sdh) protein was associated with decrease in sensitivity to SDHIs. Three of these mutations were stably inherited in the absence of SDHI fungicide, and resistant isolates did not demonstrate a fitness penalty. There were no detectable declines in sensitivity in field populations in the years 2010-2012 in the United Kingdom. CONCLUSIONS: SDHIs remained effective in controlling Rcc in the United Kingdom in the years 2010-2012. However, given that the first isolates of Rcc with reduced sensitivity appeared in other European countries in 2015, robust antiresistance strategies need to be continuously implemented to maintain effective disease control. © 2016 Society of Chemical Industry.


Asunto(s)
Ascomicetos/enzimología , Ascomicetos/genética , Farmacorresistencia Fúngica/genética , Fungicidas Industriales , Succinato Deshidrogenasa/genética , Hordeum/microbiología , Mutación , Enfermedades de las Plantas/microbiología , Hojas de la Planta , Succinato Deshidrogenasa/antagonistas & inhibidores , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...