Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Rapid Commun Mass Spectrom ; 34 Suppl 2: e8630, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31677299

RESUMEN

Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique that when used to analyze synthetic polymer analytes often requires the addition of a metal cationization agent (herein termed the "salt"). The choice of both the matrix and the cationization agent needs to be taken into account when considering the polymer under study; different polymers have shown different affinities toward different cationization agents, and their selectivity can change as the matrix changes. Salt-to-analyte ratio (S/A) plots are used in this work to investigate the effect of the quantity of cationization agent employed in the analysis of a poly (methylmethacrylate) (PMMA) analyte with different MALDI matrices. The point at which analyte signal stops increasing with the added cationization agent is termed the "cation saturation point," and it was found to occur around a S/A of 1. When the analyte signal after this point remains constant, it is termed an "ideal case." The "non-ideal case" occurs when the analyte signal decreases after the cation saturation point. The amount of matrix present (measured as the matrix-to-analyte molar ratio, M/A) and the use of different counterions for the salt are also found to affect the intensity of the analyte signal. In non-ideal cases, changes in the counterion or an increase in the M/A are found to increase the analyte signal, often converting an initially observed non-ideal case into an ideal case. Several experiments attempting to uncover the reason for observation of the non-ideal S/A behavior are also described.

2.
J Am Soc Mass Spectrom ; 29(2): 422-434, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29218450

RESUMEN

Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days. Graphical Abstract.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...