Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 124(5): 849-860, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31361802

RESUMEN

BACKGROUND AND AIMS: At the rear edge of the distribution of species, extreme isolation and small population size influence the genetic diversity and differentiation of plant populations. This may be particularly true for Arctic-alpine species in mid-latitude mountains, but exactly how peripherality has shaped their genetic and reproductive characteristics is poorly investigated. The present study, focused on Salix herbacea, aims at providing new insights into the causes behind ongoing demographic dynamics and their consequences for peripheral populations of Arctic-alpine species. METHODS: We performed a whole-population, highly detailed sampling of the only two S. herbacea populations in the northern Apennines, comparing their clonal and genetic diversity, sex ratio and spatial genetic structure with a reference population from the Alps. After inspecting ~1800 grid intersections in the three populations, 563 ramets were genotyped at 11 nuclear microsatellite markers (nSSRs). Past demography and mating patterns of Apennine populations were investigated to elucidate the possible causes of altered reproductive dynamics. KEY RESULTS: Apennine populations, which experienced a Holocene bottleneck and are highly differentiated (FST = 0.15), had lower clonal and genetic diversity compared with the alpine population (RMLG = 1 and HE = 0.71), with the smaller population exhibiting the lowest diversity (RMLG = 0.03 and HE = 0.24). An unbalanced sex ratio was found in the larger (63 F:37 M) and the smaller (99 F:1 M) Apennine population. Both were characterized by the presence of extremely large clones (up to 2500 m2), which, however, did not play a dominant role in local reproductive dynamics. CONCLUSIONS: Under conditions of extreme isolation and progressive size reduction, S. herbacea has experienced an alteration of genetic characteristics produced by the prevalence of clonal growth over sexual reproduction. However, our results showed that the larger Apennine population has maintained levels of sexual reproduction enough to counteract a dramatic loss of genetic and clonal diversity.


Asunto(s)
Salix , Regiones Árticas , Variación Genética , Genética de Población , Genotipo , Repeticiones de Microsatélite , Reproducción
2.
Mol Ecol ; 27(6): 1428-1438, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29443422

RESUMEN

Genetic association studies in forest trees would greatly benefit from information on the response of trees to environmental stressors over time, which can be provided by dendroecological analysis. Here, we jointly analysed dendroecological and genetic data of surviving silver fir trees to explore the genetic basis of their response to the iconic stress episode of the 1970s and 1980s that led to large-scale forest dieback in Central Europe and has been attributed to air pollution. Specifically, we derived dendrophenotypic measures from 190 trees in the Bavarian Forest that characterize the resistance, resilience and recovery during this growth depression, and in the drought year in 1976. By focusing on relative growth changes of trees and by standardizing the dendrophenotypes within stands, we accounted for variation introduced by micro- and macroscale environmental differences. We associated the dendrophenotypes with single nucleotide polymorphisms (SNPs) in candidate genes using general linear models (GLMs) and the machine learning algorithm random forest with subsequent feature selection. Most trees at our study sites experienced a severe growth decline from 1974 until the mid-1980s with minimum values during the drought year. Fifteen genes were associated with the dendrophenotypes, including genes linked to photosynthesis and drought stress. With our study, we show that dendrophenotypes can be a powerful resource for genetic association studies that permit to account for micro- and macroenvironmental variation when data are derived from natural populations. We call for a wider collaboration of dendroecologists and forest geneticists to integrate individual tree-level dendrophenotypes in genetic association studies.


Asunto(s)
Abies/genética , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple/genética , Estrés Fisiológico/genética , Abies/crecimiento & desarrollo , Clima , Sequías , Ecología , Estudios de Asociación Genética , Genotipo
3.
Ann Bot ; 119(4): 671-679, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28028015

RESUMEN

Background and Aims: Wild olive ( Olea europaea subsp. europaea var. sylvestris ) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. Methods: The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. Key Results: The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. Conclusions: Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources.


Asunto(s)
Flujo Génico/genética , Olea/genética , Polen/genética , Variación Genética/genética , Genética de Población , España
4.
Ann Bot ; 115(4): 683-92, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25725008

RESUMEN

BACKGROUND AND AIMS: Ulmus minor has been severely affected by Dutch elm disease (DED). The introduction into Europe of the exotic Ulmus pumila, highly tolerant to DED, has resulted in it widely replacing native U. minor populations. Morphological and genetic evidence of hybridization has been reported, and thus there is a need for assessment of interspecific gene flow patterns in natural populations. This work therefore aimed at studying pollen gene flow in a remnant U. minor stand surrounded by trees of both species scattered across an agricultural landscape. METHODS: All trees from a small natural stand (350 in number) and the surrounding agricultural area within a 5-km radius (89) were genotyped at six microsatellite loci. Trees were morphologically characterized as U. minor, U. pumila or intermediate phenotypes, and morphological identification was compared with Bayesian clustering of genotypes. For paternity analysis, seeds were collected in two consecutive years from 20 and 28 mother trees. Maximum likelihood paternity assignment was used to elucidate intra- and interspecific gene flow patterns. KEY RESULTS: Genetic structure analyses indicated the presence of two genetic clusters only partially matching the morphological identification. The paternity analysis results were consistent between the two consecutive years of sampling and showed high pollen immigration rates (∼0·80) and mean pollination distances (∼3 km), and a skewed distribution of reproductive success. Few intercluster pollinations and putative hybrid individuals were found. CONCLUSIONS: Pollen gene flow is not impeded in the fragmented agricultural landscape investigated. High pollen immigration and extensive pollen dispersal distances are probably counteracting the potential loss of genetic variation caused by isolation. Some evidence was also found that U. minor and U. pumila can hybridize when in sympatry. Although hybridization might have beneficial effects on both species, remnant U. minor populations represent a valuable source of genetic diversity that needs to be preserved.


Asunto(s)
Flujo Génico , Variación Genética , Ulmus/genética , Ecosistema , Hibridación Genética , Italia
5.
Heredity (Edinb) ; 108(3): 322-31, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21897442

RESUMEN

The study of the dispersal capability of a species can provide essential information for the management and conservation of its genetic variability. Comparison of gene flow rates among populations characterized by different management and evolutionary histories allows one to decipher the role of factors such as isolation and tree density on gene movements. We used two paternity analysis approaches and different strategies to handle the possible presence of genotyping errors to obtain robust estimates of pollen flow in four European beech (Fagus sylvatica L.) populations from Austria and France. In each country one of the two plots is located in an unmanaged forest; the other plots are managed with a shelterwood system and inside a colonization area (in Austria and France, respectively). The two paternity analysis approaches provided almost identical estimates of gene flow. In general, we found high pollen immigration (~75% of pollen from outside), with the exception of the plot from a highly isolated forest remnant (~50%). In the two unmanaged plots, the average within-population pollen dispersal distances (from 80 to 184 m) were higher than previously estimated for beech. From the comparison between the Austrian managed and unmanaged plots, that are only 500 m apart, we found no evidence that either gene flow or reproductive success distributions were significantly altered by forest management. The investigated phenotypic traits (crown area, height, diameter and flowering phenology) were not significantly related with male reproductive success. Shelterwood seems to have an effect on the distribution of within-population pollen dispersal distances. In the managed plot, pollen dispersal distances were shorter, possibly because adult tree density is three-fold (163 versus 57 trees per hectare) with respect to the unmanaged one.


Asunto(s)
Fagus/genética , Flujo Génico , Polen/genética , Alelos , Austria , ADN de Plantas , Evolución Molecular , Francia , Frecuencia de los Genes , Variación Genética , Genética de Población , Genotipo , Escala de Lod , Repeticiones de Microsatélite , Modelos Genéticos , Reproducción/genética , Semillas/genética
6.
Heredity (Edinb) ; 103(2): 136-45, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19384340

RESUMEN

At treeline, selection by harsh environmental conditions sets an upward limit to arboreal vegetation. Increasing temperatures and the decline of traditional animal raising have favoured an upward shift of treeline in the last decades. These circumstances create a unique opportunity to study the balance of the main forces (selection and gene flow) that drive tree migration. We conducted a parentage analysis sampling and genotyping with five microsatellite markers in all Norway spruce individuals (342 juveniles and 23 adults) found in a recently colonized treeline area (Paneveggio forest, Eastern Alps, Italy). Our goal was to evaluate local reproductive success versus gene flow from the outside. We were able to identify both parents among local adults for only 11.1% of the juveniles. In the gamete pool we sampled, two-thirds were not produced locally. Effective seed dispersal distance distribution was characterized by a peak far from the seed source (mean 344.66 m+/-191.02 s.d.). Reproductive success was skewed, with six local adults that generated almost two-thirds (62.4%) of juveniles with local parents. Our findings indicate that, although a few local adults seem to play an important role in the colonization process at treeline, large levels of gene flow from outside were maintained, suggesting that the potential advantages of local adults (such as local adaptation, proximity to the colonization area, phenological synchrony) did not prevent a large gamete immigration.


Asunto(s)
Flujo Génico , Picea/genética , Altitud , Repeticiones de Microsatélite , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...