Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 305(6): H913-22, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23832699

RESUMEN

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) have been recently derived and are used for basic research, cardiotoxicity assessment, and phenotypic screening. However, the hiPS-CM phenotype is dependent on their derivation, age, and culture conditions, and there is disagreement as to what constitutes a functional hiPS-CM. The aim of the present study is to characterize the temporal changes in hiPS-CM phenotype by examining five determinants of cardiomyocyte function: gene expression, ion channel functionality, calcium cycling, metabolic activity, and responsiveness to cardioactive compounds. Based on both gene expression and electrophysiological properties, at day 30 of differentiation, hiPS-CMs are immature cells that, with time in culture, progressively develop a more mature phenotype without signs of dedifferentiation. This phenotype is characterized by adult-like gene expression patterns, action potentials exhibiting ventricular atrial and nodal properties, coordinated calcium cycling and beating, suggesting the formation of a functional syncytium. Pharmacological responses to pathological (endothelin-1), physiological (IGF-1), and autonomic (isoproterenol) stimuli similar to those characteristic of isolated adult cardiac myocytes are present in maturing hiPS-CMs. In addition, thyroid hormone treatment of hiPS-CMs attenuated the fetal gene expression in favor of a more adult-like pattern. Overall, hiPS-CMs progressively acquire functionality when maintained in culture for a prolonged period of time. The description of this evolving phenotype helps to identify optimal use of hiPS-CMs for a range of research applications.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Diferenciación Celular/fisiología , Línea Celular , Humanos , Canales Iónicos/fisiología , Miocitos Cardíacos/clasificación , Fenotipo , Células Madre Pluripotentes/clasificación
2.
J Clin Invest ; 117(5): 1324-34, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17415416

RESUMEN

Cytoskeletal proteins have been implicated in the pathogenesis of cardiomyopathy, but how the cytoskeleton influences the transcriptional alterations associated with adverse cardiac remodeling remains unclear. Striated muscle activator of Rho signaling (STARS) is a muscle-specific actin-binding protein localized to the Z disc that activates serum response factor-dependent (SRF-dependent) transcription by inducing nuclear translocation of the myocardin-related SRF coactivators MRTF-A and -B. We show that STARS expression is upregulated in mouse models of cardiac hypertrophy and in failing human hearts. A conserved region of the STARS promoter containing an essential binding site for myocyte enhancer factor-2 (MEF2), a stress-responsive transcriptional activator, mediates cardiac expression of STARS, which in turn activates SRF target genes. Forced overexpression of STARS in the heart sensitizes the heart to pressure overload and calcineurin signaling, resulting in exaggerated deterioration in cardiac function in response to these hypertrophic stimuli. These findings suggest that STARS modulates the responsiveness of the heart to stress signaling by functioning as a cytoskeletal intermediary between MEF2 and SRF.


Asunto(s)
Cardiomegalia/metabolismo , Proteínas de Microfilamentos/fisiología , Factores Reguladores Miogénicos/metabolismo , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Remodelación Ventricular , Animales , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Línea Celular , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patología , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Ratas , Transducción de Señal/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Regulación hacia Arriba/genética , Remodelación Ventricular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...