Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21229, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040826

RESUMEN

Myasthenia Gravis (MG) is an autoimmune disease associated with severe neuromuscular weakness. Diagnostic confirmation of MG is typically delayed and secured in about 85% and 50% of patients with generalized and ocular MG, respectively with serum antibodies. We have identified a sensitive and specific diagnostic biomarker for various MG serotypes with quantitative proteomics. Serum proteomes of 18 individuals (MG patients, healthy controls (HC), Rheumatoid Arthritis (RA) were quantified in a pilot study and occurrence of high residual fibrinogen was validated by immunoblotting and further investigated by targeted mass spectrometry on the sera of 79 individuals (31 MG of various serotypes, 30 HC, 18 RA). Initial proteomic analysis identified high residual fibrinogen in MG patient sera which was then validated by antibody-based testing. Subsequently, a blinded study of independent samples showed 100% differentiation of MG patients from controls. A final serological quantification of 14 surrogate peptides derived from α-, ß-, and γ-subunits of fibrinogen in 79 individuals revealed fibrinogen to be highly specific and 100% sensitive for MG (p < 0.00001), with a remarkable average higher abundance of > 1000-fold over control groups. Our unanticipated discovery of high levels of residual serum fibrinogen in all MG patients can secure rapid bedside diagnosis of MG.


Asunto(s)
Artritis Reumatoide , Hemostáticos , Miastenia Gravis , Humanos , Fibrinógeno , Proteómica , Proyectos Piloto , Serogrupo , Biomarcadores , Autoanticuerpos
2.
Am J Physiol Endocrinol Metab ; 323(1): E53-E68, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35635311

RESUMEN

Major urinary proteins (MUPs), members of the broader lipocalin protein family, are classified as pheromones that are excreted in male rodent urine to define conspecific territoriality. In screening for differentially regulated mRNA transcripts in a mouse model of type 1 experimental diabetes mellitus (DM), we identified an unexpected upregulation of several closely related MUP transcripts within diabetic sensory dorsal root ganglia (DRG). Both sexes expressed overall MUP protein content as identified by an antibody widely targeting these upregulated family members, and immunohistochemistry identified expression within neurons, satellite glial cells, and Schwann cells. In dissociated adult sensory neurons, knockdown by an siRNA targeting upregulated MUP mRNAs, enhanced neurite outgrowth, indicating a growth-suppressive role, an impact that was synergistic with subnanomolar insulin neuronal signaling. While MUP knockdown did not generate rises in insulin signaling transcripts, the protein did bind to several mitochondrial and glial targets in DRG lysates. Analysis of a protein closely related to MUPs but that is expressed in humans, lipocalin-2, also suppressed growth, but its impact was unrelated to insulin. In a model of chronic type 1 DM, MUP siRNA knockdown improved electrophysiological and behavioral abnormalities of experimental neuropathy. MUPs have actions beyond pheromone signaling in rodents that involve suppression of growth plasticity of sensory neurons. Its hitherto unanticipated actions overlap with those of lipocalin-2 and may identify a common and widely mediated impact on neuron growth properties by members of the lipocalin family. Knockdown of MUP supports the trophic actions of insulin as a strategy that may improve features of type 1 experimental diabetic neuropathy.NEW & NOTEWORTHY New molecular mechanisms are important to unravel and understand diabetic polyneuropathy, a disorder prevalent in over half of persons with diabetes mellitus (DM). MUPs, members of the lipocalin family of molecules, have an unexpected impact on the plasticity of sensory neurons that are targeted in type 1 experimental diabetic neuropathy. This work explores this potential target in neuropathy in the context of the lipocalin family of molecules.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neuropatías Diabéticas , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Ganglios Espinales/metabolismo , Humanos , Insulina/metabolismo , Lipocalina 2 , Masculino , Ratones , Feromonas/metabolismo , Proteínas , ARN Interferente Pequeño , Células Receptoras Sensoriales/metabolismo
3.
Biochem Cell Biol ; 98(1): 61-69, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31095918

RESUMEN

In deciphering the regulatory networks of gene expression controlled by the small non-coding RNAs known as microRNAs (miRNAs), a major challenge has been with the identification of the true mRNA targets by these RNAs within the context of the enormous numbers of predicted targets for each of these small RNAs. To facilitate the system-wide identification of miRNA targets, a variety of system wide methods, such as proteomics, have been implemented. Here we describe the utilization of quantitative label-free proteomics and bioinformatics to identify the most significant changes to the proteome upon expression of the miR-23a-27a-24-2 miRNA cluster. In light of recent work leading to the hypothesis that only the most pronounced regulatory events by miRNAs may be physiologically relevant, our data reveal that label-free analysis circumvents the limitations of proteomic labeling techniques that limit the maximum differences that can be quantified. The result of our analysis identifies a series of novel candidate targets that are reduced in abundance by more than an order of magnitude upon the expression of the miR-23a-27a-24-2 cluster.


Asunto(s)
MicroARNs/biosíntesis , Proteoma/metabolismo , Proteómica , Células Cultivadas , Células HEK293 , Humanos , MicroARNs/análisis , Proteoma/análisis
4.
RNA ; 26(1): 44-57, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31653714

RESUMEN

DDX21 is a newly discovered RNA G-quadruplex (rG4) binding protein with no known biological rG4 targets. In this study we used label-free proteomic MS/MS to identify 26 proteins that are expressed at significantly different levels in cells expressing an rG4-binding deficient DDX21 (M4). MS data are available via ProteomeXchange with identifier PXD013501. From this list we validate MAGED2 as a protein that is regulated by DDX21 through rG4 in its 5'-UTR. MAGED2 protein levels, but not mRNA levels, are reduced by half in cells expressing DDX21 M4. MAGED2 has a repressive effect on TRAIL-R2 expression that is relieved under these conditions, resulting in elevated TRAIL-R2 mRNA and protein in MCF-7 cells, rendering them sensitive to TRAIL-mediated apoptosis. Our work identifies the role of DDX21 in regulation at the translational level through biologically relevant rG4 and shows that MAGED2 protein levels are regulated, at least in part, by the potential to form rG4 in their 5'-UTRs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Neoplasias/metabolismo , ARN Helicasas DEAD-box/metabolismo , G-Cuádruplex , Regulación de la Expresión Génica , ARN/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Regiones no Traducidas 5'/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Antígenos de Neoplasias/genética , ARN Helicasas DEAD-box/genética , Guanina/química , Humanos , Células MCF-7 , Biosíntesis de Proteínas , Proteómica , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...