Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Innov Clin Neurosci ; 20(10-12): 35-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38193103

RESUMEN

Objective: The advent of next-generation sequencing (NGS) enabled the detection of low-level brain somatic variants in postsurgical tissue of focal cortical dysplasia (FCD). The genetic background of FCD Type I remains elusive, while the mammalian target of rapamycin (mTOR) pathway seems to have a relevant role in the pathogenesis of FCD Type II. Our goal was to uncover information on the molecular basis of FCD, performing whole genome sequencing (WGS) in postsurgical tissue to detect candidate brain-specific somatic variants, and evaluate their clinical significance. Design: WGS was performed using paired peripheral venous blood and postsurgical pathological brain deoxyribonucleic acid (DNA) samples. Libraries were prepared using the Roche KAPA HyperPrep polymerase chain reaction (PCR) free library preparation kit. Paired-end 150bp reads were generated on the Illumina NovaSeq platform. The FASTQ files were processed using the nf-core sarek pipeline (version 3.0) to call somatic variants, which were then annotated with ANNOVAR. A screening strategy was applied to obtain relevant variants. Results: Two female patients with drug-resistant epilepsy due to FCD who underwent surgical treatment were included. Regarding neuropathological diagnosis, one patient had FCD Type Ia and the other had FCD Type IIa. Five somatic nonsynonymous single nucleotide variants (SNVs) were detected using WGS, three in FCD Ia tissue (WDR24 p.Trp259Gly; MICAL1 p.Lys1036Arg; and KATNB1 p.Leu566Ile) and two in FCD IIa tissue (MATN4 p.Phe91Val and ANKRD6 p.His386Gln). All variants were predicted to be potentially pathogenic by at least two different tools. However, they were classified as variants of uncertain significance (VUS) according to the American College of Medical Genetics and Genomics (ACMG) criteria. Conclusion: Brain-specific somatic missense variants were identified by NGS in new candidate genes (WDR24, MICAL1, KATNB1, MATN4, and ANKRD6) using postsurgical FCD tissue, which may contribute to further understanding of the genetic background of FCD. All the reported genes were previously related to epilepsy and/or malformations of central nervous system (CNS) and cortical development. However, the pathogenicity assessment of these variants and, consequently, their impact on clinical practice still poses an important challenge.

2.
Neuropathology ; 42(6): 467-482, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35844095

RESUMEN

Low-grade neuroepithelial tumors (LNETs) represent an important group of central nervous system neoplasms, some of which may be associated to epilepsy. The concept of long-term epilepsy-associated tumors (LEATs) includes a heterogenous group of low-grade, cortically based tumors, associated to drug-resistant epilepsy, often requiring surgical treatment. LEATs entities can sometimes be poorly discriminated by histological features, precluding a confident classification in the absence of additional diagnostic tools. This study aimed to provide an updated review on the genomic findings and DNA methylation profiling advances in LNETs, including histological entities of LEATs. A comprehensive search strategy was conducted on PubMed, Embase, and Web of Science Core Collection. High-quality peer-reviewed original manuscripts and review articles with full-text in English, published between 2003 and 2022, were included. Results were screened based on titles and abstracts to determine suitability for inclusion, and when addressed the topic of the review was screened by full-text reading. Data extraction was performed through a qualitative content analysis approach. Most LNETs appear to be driven mainly by a single genomic abnormality and respective affected signaling pathway, including BRAF p.V600E mutations in ganglioglioma, FGFR1 abnormalities in dysembryoplastic neuroepithelial tumor, MYB alterations in angiocentric glioma, BRAF fusions in pilocytic astrocytoma, PRKCA fusions in papillary glioneuronal tumor, between others. However, these molecular alterations are not exclusive, with some overlap amongst different tumor histologies. Also, clustering analysis of DNA methylation profiles allowed the identification of biologically similar molecular groups that sometimes transcend conventional histopathological classification. The exciting developments on the molecular basis of these tumors reinforce the importance of an integrative histopathological and (epi)genetic classification, which can be translated into precision medicine approaches.


Asunto(s)
Neoplasias Encefálicas , Epilepsia , Ganglioglioma , Glioma , Neoplasias Neuroepiteliales , Niño , Humanos , Metilación de ADN , Neoplasias Neuroepiteliales/patología , Ganglioglioma/patología , Glioma/genética , Neoplasias Encefálicas/patología , Epilepsia/genética , Epilepsia/patología
3.
Cytogenet Genome Res ; 162(1-2): 28-33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35477180

RESUMEN

A palette of copy number changes in long-term epilepsy-associated tumors (LEATs) have been reported, but the data are heterogeneous. To better understand the molecular basis underlying the development of LEATs, we performed array-comparative genomic hybridization analysis to investigate chromosomal imbalances across the entire genome in 8 cases of LEATs. A high number of aberrations were found in 4 patients, among which deletions predominated. Both whole-chromosome and regional abnormalities were observed, including monosomy 19, deletion of 1p, deletions of 4p, 12p, and 22q, and gain of 20p. The common altered regions are located mainly on chromosomes 19 and 4p, identifying genes potentially involved in biological processes and cellular mechanisms related to tumorigenesis. Our study highlights new genomic alterations and reinforces others previously reported, offering new molecular insights that may help in diagnosis and therapeutic decision-making.


Asunto(s)
Epilepsia , Neoplasias , Aberraciones Cromosómicas , Hibridación Genómica Comparativa , Epilepsia/genética , Genómica , Humanos , Monosomía , Hibridación de Ácido Nucleico
4.
J Clin Pathol ; 75(6): 422-425, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33653728

RESUMEN

Multiple myeloma (MM) genomic complexity reflects in the variable patients' clinical presentation. Genome-wide studies seem to be a reasonable alternative to identify critical genomic lesions. In the current study, we have performed the genomic characterisation of a Portuguese cohort of patients with MM by array comparative genomic hybridisation. Overall, the most frequently detected alterations were 13q deletions, gains of 1q, 19p, 15q, 5p and 7p and trisomy 9. Even though some identified genomic alterations were previously associated with a prognostic value, other abnormalities remain with unknown, but putative significance for patients' clinical practice. These genomic alterations should be further assessed as possible biomarkers.


Asunto(s)
Mieloma Múltiple , Aberraciones Cromosómicas , Deleción Cromosómica , Genómica , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/genética , Portugal , Trisomía
5.
Ocul Oncol Pathol ; 7(1): 17-25, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33796512

RESUMEN

Tumor biopsies in uveal melanoma (UM) serve mainly the purpose of prognostication and assessment of individual metastatic risk, but can be used for diagnosis in selected cases. The importance of precise information is paramount for selecting adequate surveillance protocols, patient counseling, and optimization of treatment strategies. However, intratumoral heterogeneity and sample representativity are major concerns and can interfere with the correct prediction of the patient's prognosis. We report a series of cases of UM with distinct morphologically identifiable areas, highlighting the differences in clinical behavior, as well as histopathological and genetic features.

6.
Am J Med Genet A ; 182(11): 2694-2698, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32896075

RESUMEN

Proximal interstitial deletions of chromosome 9p13 have been described only in a few patients with developmental delay, moderate intellectual disability, craniofacial dysmorphism, short stature, genital anomalies, and precocious puberty. To corroborate and expand these findings, we report on two novel syndromic male patients with 9p13 deletions suffering from a similar form of tremor and compare them with literature data. Despite genomic variability in deletion sizes, all patients displayed homogeneous dysmorphism and clinical manifestations, including very invalidating tremor. Furthermore, we outlined a region of around 2 Mb shared in common by all patients with nearly 70 genes, among which NPR2 might have a role in the phenotype. These data delineate interstitial 9p13 deletion syndrome with tremor as a major feature.


Asunto(s)
Anomalías Múltiples/patología , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Fenotipo , Temblor/patología , Anomalías Múltiples/genética , Adolescente , Humanos , Recién Nacido , Masculino , Síndrome , Temblor/genética
7.
Front Neurosci ; 14: 580357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551717

RESUMEN

Introduction: Focal cortical dysplasias (FCDs) are a group of malformations of cortical development that constitute a common cause of drug-resistant epilepsy, often subjected to neurosurgery, with a suboptimal long-term outcome. The past few years have witnessed a dramatic leap in our understanding of the molecular basis of FCD. This study aimed to provide an updated review on the genomic and epigenetic advances underlying FCD etiology, to understand a genotype-phenotype correlation and identify priorities to lead future translational research. Methods: A scoping review of the literature was conducted, according to previously described methods. A comprehensive search strategy was applied in PubMed, Embase, and Web of Science from inception to 07 May 2020. References were screened based on title and abstract, and posteriorly full-text articles were assessed for inclusion according to eligibility criteria. Studies with novel gene variants or epigenetic regulatory mechanisms in patients that underwent epilepsy surgery, with histopathological diagnosis of FCD type I or II according to Palmini's or the ILAE classification system, were included. Data were extracted and summarized for an overview of evidence. Results: Of 1,156 candidate papers, 39 met the study criteria and were included in this review. The advent of next-generation sequencing enabled the detection in resected FCD tissue of low-level brain somatic mutations that occurred during embryonic corticogenesis. The mammalian target of rapamycin (mTOR) signaling pathway, involved in neuronal growth and migration, is the key player in the pathogenesis of FCD II. Somatic gain-of-function variants in MTOR and its activators as well as germline, somatic, and second-hit mosaic loss-of-function variants in its related repressors have been reported. However, the genetic background of FCD type I remains elusive, with a pleomorphic repertoire of genes affected. DNA methylation and microRNAs were the two epigenetic mechanisms that proved to have a functional role in FCD and may represent molecular biomarkers. Conclusion: Further research into the possible pathogenic causes of both FCD subtypes is required, incorporating single-cell DNA/RNA sequencing as well as methylome and proteomic analysis. The collected data call for an integrated clinicopathologic and molecular genetic diagnosis in current practice not only to improve diagnostic accuracy but also to guide the development of future targeted treatments.

8.
Eur J Med Genet ; 58(9): 455-65, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26206081

RESUMEN

INTRODUCTION: Oculo-auriculo-vertebral spectrum (OAVS OMIM 164210) is a craniofacial developmental disorder affecting the development of the structures derived from the 1st and the 2nd branchial arches during embryogenesis, with consequential maxillary, mandibular, and ear abnormalities. The phenotype in OAVS is variable and associated clinical features can involve the cardiac, renal, skeletal, and central nervous systems. Its aetiology is still poorly understood. METHODS: We have evaluated the clinical phenotypes of 51 previously unpublished patients with OAVS and their parents, and performed comparative genomic hybridization microarray studies to identify potential causative loci. RESULTS: Of all 51 patients, 16 (31%) had a family history of OAVS. Most had no relevant pre-natal history and only 5 (10%) cases had a history of environmental exposures that have previously been described as risk factors for OAVS. In 28 (55%) cases, the malformations were unilateral. When the involvement was bilateral, it was asymmetric. Ear abnormalities were present in 47 (92%) patients (unilateral in 24; and bilateral in 23). Hearing loss was common (85%), mostly conductive, but also sensorineural, or a combination of both. Hemifacial microsomia was present in 46 (90%) patients (17 also presented facial nerve palsy). Ocular anomalies were present in 15 (29%) patients. Vertebral anomalies were confirmed in 10 (20%) cases; 50% of those had additional heart, brain and/or other organ abnormalities. Brain abnormalities were present in 5 (10%) patients; developmental delay was more common among these patients. Limb abnormalities were found in 6 (12%) patients, and urogenital anomalies in 5 (10%). Array-CGH analysis identified 22q11 dosage anomalies in 10 out of 22 index cases screened. DISCUSSION: In this study we carried out in-depth phenotyping of OAVS in a large, multicentre cohort. Clinical characteristics are in line with those reported previously, however, we observed a higher incidence of hemifacial microsomia and lower incidence of ocular anomalies. Furthermore our data suggests that OAVS patients with vertebral anomalies or congenital heart defects have a higher frequency of additional brain, limb or other malformations. We had a higher rate of familial cases in our cohort in comparison with previous reports, possibly because these cases were referred preferentially to our genetic clinic where family members underwent examination. We propose that familial OAVS cases show phenotypic variability, hence, affected relatives might have been misclassified in previous reports. Moreover, in view of its phenotypic variability, OAVS is potentially a spectrum of conditions, which overlap with other conditions, such as mandibulofacial dysostosis. Array CGH in our cohort identified recurrent dosage anomalies on 22q11, which may contribute to, or increase the risk of OAVS. We hypothesize that although the 22q11 locus may harbour gene(s) or regulatory elements that play a role in the regulation of craniofacial symmetry and 1st and 2nd branchial arch development, OAVS is a heterogeneous condition and many cases have a multifactorial aetiology or are caused by mutations in as yet unidentified gene(s).


Asunto(s)
Discapacidades del Desarrollo/genética , Síndrome de Goldenhar/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Encéfalo/anomalías , Hibridación Genómica Comparativa , Oído/anomalías , Oído/embriología , Anomalías del Ojo/diagnóstico , Anomalías del Ojo/genética , Femenino , Síndrome de Goldenhar/diagnóstico , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Hernia Diafragmática/diagnóstico , Hernia Diafragmática/genética , Humanos , Masculino , Columna Vertebral/anomalías
9.
Mol Cytogenet ; 8: 103, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26719768

RESUMEN

BACKGROUND: Array-based comparative genomic hybridization has been assumed to be the first genetic test offered to detect genomic imbalances in patients with unexplained intellectual disability with or without dysmorphisms, multiple congenital anomalies, learning difficulties and autism spectrum disorders. Our study contributes to the genotype/phenotype correlation with the delineation of laboratory criteria which help to classify the different copy number variants (CNVs) detected. We clustered our findings into five classes ranging from an imbalance detected in a microdeletion/duplication syndrome region (class I) to imbalances that had previously been reported in normal subjects in the Database of Genomic Variants (DGV) and thus considered common variants (class IV). RESULTS: All the analyzed 1000 patients had at least one CNV independently of its clinical significance. Most of them, as expected, were alterations already reported in the DGV for normal individuals (class IV) or without known coding genes (class III-B). In approximately 14 % of the patients an imbalance involving known coding genes, but with partially overlapping or low frequency of CNVs described in the DGV was identified (class IIIA). In 10.4 % of the patients a pathogenic CNV that explained the phenotype was identified consisting of: 40 class I imbalances, 44 class II de novo imbalances and 21 class II X-chromosome imbalances in male patients. In 20 % of the patients a familial pathogenic or potentially pathogenic CNV, consisting of inherited class II imbalances, was identified that implied a family evaluation by the clinical geneticists. CONCLUSIONS: As this interpretation can be sometimes difficult, particularly if it is not possible to study the parents, using the proposed classification we were able to prioritize the multiple imbalances that are identified in each patient without immediately having to classify them as pathogenic or benign.

10.
Gene ; 527(1): 421-5, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23792063

RESUMEN

Fragile X syndrome is caused by the expansion of an unstable CGG repeat in the 5'UTR of FMR1 gene. The occurrence of mosaicism is not uncommon, especially in male patients, whereas in females it is not so often reported. Here we report a female foetus that was subject to prenatal diagnosis, because of her mother being a premutation carrier. The foetus was identified as being a mosaic for an intermediate allele and a full mutation of FMR1 gene, in the presence of a normal allele. The mosaic status was confirmed in three different tissues of the foetus--amniotic fluid, skin biopsy and blood--the last two obtained after pregnancy termination. Karyotype analysis and X-chromosome STR markers analysis do not support the mosaicism as inheritance of both maternal alleles. Oligonucleotide array-CGH excluded an imbalance that could contain the primer binding site with a different repeat size. The obtained results give compelling evidence for a postzygotic expansion mechanism where the foetus mosaic pattern originated from expansion of the mother's premutation into a full mutation and consequent regression to an intermediate allele in a proportion of cells. These events occurred in early embryogenesis before the commitment of cells into the different tissues, as the three tested tissues of the foetus have the same mosaic pattern. The couple has a son with Fragile X mental retardation syndrome and choose to terminate this pregnancy after genetic counselling.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Aborto Eugénico , Alelos , Amniocentesis , Cromosomas Humanos X , Hibridación Genómica Comparativa , Femenino , Síndrome del Cromosoma X Frágil/genética , Humanos , Lactante , Masculino , Mosaicismo , Linaje , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA