Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892043

RESUMEN

We analyzed and compared variations in the urinary metabolome, as well as postnatal clinical outcomes among preterm infants, based on the timing of antenatal corticosteroid (ACS) administration in response to preterm labor onset in their mothers. This was a prospective observational study held in the Neonatal Intensive Care Unit, Department of Woman's and Child's Health, Padova University Hospital (Italy). A urine sample was obtained from each patient within 24 h of birth; Mass Spectrometry-based untargeted metabolomics analysis was then conducted. We searched for any significant disparities in the metabolomic profile of preterm newborns subjected to antenatal corticosteroid (ACS) treatment at varying timings; their correlation with clinical outcomes were also evaluated. The group receiving ACS within the optimal time window (1-7 days before delivery) exhibited elevated levels of cysteine, N-acetylglutamine, propionyl carnitine and 5-hydroxyindolacetic acid, coupled with a decrease in pipecolic acid. Clinically, this group demonstrated a reduced need for invasive ventilation (p = 0.04). In conclusion, metabolomics analysis identified several metabolites that discriminated preterm infants whose mothers received ACS within the recommended time window. Elevated levels of cysteine and 5-Hydroxyindoleacetic acid, metabolites characterized by antioxidant and anti-inflammatory properties, were observed in these infants. This metabolic profile correlated with improved respiratory outcomes, as evidenced by a reduced necessity for invasive ventilation at birth.


Asunto(s)
Corticoesteroides , Recien Nacido Prematuro , Metaboloma , Humanos , Recién Nacido , Femenino , Metaboloma/efectos de los fármacos , Embarazo , Corticoesteroides/orina , Metabolómica/métodos , Estudios Prospectivos , Masculino , Adulto
2.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38338881

RESUMEN

The RNA-binding protein LIN28B, identified as an independent risk factor in high-risk neuroblastoma patients, is implicated in adverse treatment outcomes linked to metastasis and chemoresistance. Despite its clinical significance, the impact of LIN28B on neuroblastoma cell metabolism remains unexplored. This study employs a multi-omics approach, integrating transcriptome and metabolome data, to elucidate the global metabolic program associated with varying LIN28B expression levels over time. Our findings reveal that escalating LIN28B expression induces a significant metabolic rewiring in neuroblastoma cells. Specifically, LIN28B prompts a time-dependent increase in the release rate of metabolites related to the glutathione and aminoacyl-tRNA biosynthetic pathways, concomitant with a reduction in glucose uptake. These results underscore the pivotal role of LIN28B in governing neuroblastoma cell metabolism and suggest a potential disruption in the redox balance of LIN28B-bearing cells. This study offers valuable insights into the molecular mechanisms underlying LIN28B-associated adverse outcomes in neuroblastoma, paving the way for targeted therapeutic interventions.


Asunto(s)
MicroARNs , Neuroblastoma , Humanos , MicroARNs/genética , Multiómica , Neuroblastoma/metabolismo , Transcriptoma , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
EBioMedicine ; 92: 104636, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37257315

RESUMEN

BACKGROUND: The pathobiological mechanisms associated with perinatal asphyxia and hypoxic-ischemic encephalopathy are complex and poorly understood. The metabolic effects of therapeutic hypothermia have been partially explored. METHODS: We conducted a single-center longitudinal study to investigate the metabolic effects of perinatal asphyxia and hypoxic-ischemic encephalopathy on the urinary metabolome of a group of 12 asphyctic infants over time compared to 22 matched healthy newborns, using untargeted metabolomics based on mass spectrometry. FINDINGS: Over-representation pathway analysis identified the steroidogenesis pathway as being significantly disrupted, with reduced steroid levels in the first three days of life despite treatment with hypothermia. Comparison with matched healthy newborns showed that the urinary steroid content was lower in asphyctic infants before hypothermia. The lysine degradation and carnitine synthesis pathways were also significantly affected. INTERPRETATION: Steroidogenesis is significantly disrupted in asphyctic infants compared to healthy newborns. Given how neurosteroids are involved in neuromodulation and neuroprotection, translational research is warranted on the potential role of neurosteroid-based intervention in asphyctic infants. FUNDING: None.


Asunto(s)
Asfixia Neonatal , Hipotermia , Hipoxia-Isquemia Encefálica , Neuroesteroides , Embarazo , Femenino , Humanos , Recién Nacido , Lactante , Asfixia/complicaciones , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/complicaciones , Estudios Longitudinales , Hipotermia/complicaciones , Asfixia Neonatal/terapia , Metabolómica
4.
Pediatr Res ; 93(6): 1599-1608, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36085367

RESUMEN

BACKGROUND: The biochemical variations occurring in intrauterine growth restriction (IUGR), when a fetus is unable to achieve its genetically determined potential, are not fully understood. The aim of this study is to compare the urinary metabolomic profile between IUGR and non-IUGR very preterm infants to investigate the biochemical adaptations of neonates affected by early-onset-restricted intrauterine growth. METHODS: Neonates born <32 weeks of gestation admitted to neonatal intensive care unit (NICU) were enrolled in this prospective matched case-control study. IUGR was diagnosed by an obstetric ultra-sonographer and all relevant clinical data during NICU stay were captured. For each subject, a urine sample was collected within 48 h of life and underwent untargeted metabolomic analysis using mass spectrometry ultra-performance liquid chromatography. Data were analyzed using multivariate and univariate statistical analyses. RESULTS: Among 83 enrolled infants, 15 IUGR neonates were matched with 19 non-IUGR controls. Untargeted metabolomic revealed evident clustering of IUGR neonates versus controls showing derangements of pathways related to tryptophan and histidine metabolism and aminoacyl-tRNA and steroid hormones biosynthesis. CONCLUSIONS: Neonates with IUGR showed a distinctive urinary metabolic profile at birth. Although results are preliminary, metabolomics is proving to be a promising tool to explore biochemical pathways involved in this disease. IMPACT: Very preterm infants with intrauterine growth restriction (IUGR) have a distinctive urinary metabolic profile at birth. Metabolism of glucocorticoids, sexual hormones biosynthesis, tryptophan-kynurenine, and methionine-cysteine pathways seem to operate differently in this sub-group of neonates. This is the first metabolomic study investigating adaptations exclusively in extremely and very preterm infants affected by early-onset IUGR. New knowledge on metabolic derangements in IUGR may pave the ways to further, more tailored research from a perspective of personalized medicine.


Asunto(s)
Enfermedades del Prematuro , Recien Nacido Prematuro , Embarazo , Femenino , Humanos , Recién Nacido , Estudios de Casos y Controles , Retardo del Crecimiento Fetal/metabolismo , Triptófano , Estudios Prospectivos , Hormonas
5.
PLoS One ; 17(8): e0273175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35972970

RESUMEN

Perinatal asphyxia (PA) still occurs in about three to five per 1,000 deliveries in developed countries; 20% of these infants show hypoxic-ischemic encephalopathy (HIE) on brain magnetic resonance imaging (MRI). The aim of our study was to apply metabolomic analysis to newborns undergoing therapeutic hypothermia (TH) after PA to identify a distinct metabotype associated with the development of HIE on brain MRI. We enrolled 53 infants born at >35 weeks of gestation with PA: 21 of them showed HIE on brain MRI (the "HIE" group), and 32 did not (the "no HIE" group). Urine samples were collected at 24, 48 and 72 hours of TH. Metabolomic data were acquired using high-resolution mass spectrometry and analyzed with univariate and multivariate methods. Considering the first urines collected during TH, untargeted analysis found 111 relevant predictors capable of discriminating between the two groups. Of 35 metabolites showing independent discriminatory power, four have been well characterized: L-alanine, Creatine, L-3-methylhistidine, and L-lysine. The first three relate to cellular energy metabolism; their involvement suggests a multimodal derangement of cellular energy metabolism during PA/HIE. In addition, seven other metabolites with a lower annotation level (proline betaine, L-prolyl-L-phenylalanine, 2-methyl-dodecanedioic acid, S-(2-methylpropionyl)-dihydrolipoamide-E, 2,6 dimethylheptanoyl carnitine, Octanoylglucuronide, 19-hydroxyandrost-4-ene-3,17-dione) showed biological consistency with the clinical picture of PA. Moreover, 4 annotated metabolites (L-lysine, L-3-methylhistidine, 2-methyl-dodecanedioic acid, S-(2-methylpropionyl)-dihydrolipoamide-E) retained a significant difference between the "HIE" and "no HIE" groups during all the TH treatment. Our analysis identified a distinct urinary metabotype associated with pathological findings on MRI, and discovered 2 putative markers (L-lysine, L-3-methylhistidine) which may be useful for identifying neonates at risk of developing HIE after PA.


Asunto(s)
Asfixia Neonatal , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Asfixia/terapia , Asfixia Neonatal/terapia , Humanos , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/terapia , Lactante , Recién Nacido , Lisina
7.
Metabolites ; 11(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34940583

RESUMEN

There is growing interest for studying how early-life influences the development of respiratory diseases. Our aim was to apply metabolomic analysis to urine collected at birth, to evaluate whether there is any early metabolic signatures capable to distinguish children who will develop acute bronchiolitis and/or recurrent wheezing. Urine was collected at birth in healthy term newborns. Children were followed up to the age of 3 years and evaluated for the development of acute bronchiolitis and recurrent wheezing (≥3 episodes). Urine were analyzed through a liquid-chromatography mass-spectrometry based untargeted approach. Metabolomic data were investigated applying univariate and multivariate techniques. 205 children were included: 35 had bronchiolitis, 11 of whom had recurrent wheezing. Moreover, 13 children had recurrent wheezing not preceded by bronchiolitis. Multivariate data analysis didn't lead to reliable classification models capable to distinguish children with and without bronchiolitis or with recurrent wheezing preceded by bronchiolitis neither by PLS for classification (PLS2C) nor by Random Forest (RF). However, a reliable signature was discovered to distinguish children who later develop recurrent wheezing not preceded by bronchiolitis, from those who do not (MCCoob = 0.45 for PLS2C and MCCoob = 0.48 for RF). In this unselected birth cohort, a well-established untargeted metabolomic approach found no biochemical-metabolic dysregulation at birth associated with the subsequent development of acute bronchiolitis or recurrent wheezing post-bronchiolitis, not supporting the hypothesis of an underlying predisposing background. On the other hand, a metabolic signature was discovered that characterizes children who develop wheezing not preceded by bronchiolitis.

8.
Metabolites ; 11(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670629

RESUMEN

Sepsis is a major concern in neonatology, but there are no reliable biomarkers for its early diagnosis. The aim of the study was to compare the metabolic profiles of plasma and urine samples collected at birth from preterm neonates with and without earlyonset sepsis (EOS) to identify metabolic perturbations that might orient the search for new early biomarkers. All preterm newborns admitted to the neonatal intensive care unit were eligible for this proof-of-concept, prospective case-control study. Infants were enrolled as "cases" if they developed EOS, and as "controls"if they did not. Plasma samples collected at birth and urine samples collected within 24 h of birth underwent untargeted and targeted metabolomic analysis using mass spectrometry coupled with ultra-performance liquid chromatography. Univariate and multivariate statistical analyses were applied. Of 123 eligible newborns, 15 developed EOS. These 15 newborns matched controls for gestational age and weight. Metabolomic analysis revealed evident clustering of the cases versus controls, with the glutathione and tryptophan metabolic pathways markedly disrupted in the former. In conclusion, neonates with EOS had a metabolic profile at birth that clearly distinguished them from those without sepsis, and metabolites of glutathione and tryptophan pathways are promising as new biomarkers of neonatal sepsis.

9.
Metabolites ; 10(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003349

RESUMEN

BACKGROUND: "breathomics" enables indirect analysis of metabolic patterns underlying a respiratory disease. In this study, we analyze exhaled breath condensate (EBC) in asthmatic children before (T0) and after (T1) a three-week course of inhaled beclomethasone dipropionate (BDP). METHODS: we recruited steroid-naive asthmatic children for whom inhaled steroids were indicated and healthy children, evaluating asthma control, spirometry and EBC (in asthmatics at T0 and T1). A liquid-chromatography-mass-spectrometry untargeted analysis was applied to EBC and a mass spectrometry-based target analysis to urine samples. RESULTS: metabolomic analysis discriminated asthmatic (n = 26) from healthy children (n = 16) at T0 and T1, discovering 108 and 65 features relevant for the discrimination, respectively. Searching metabolomics databases, seven putative biomarkers with a plausible role in asthma biochemical-metabolic processes were found. After BDP treatment, asthmatic children, in the face of an improved asthma control (p < 0.001) and lung function (p = 0.01), showed neither changes in EBC metabolomic profile nor in urinary endogenous steroid profile. CONCLUSIONS: "breathomics" can discriminate asthmatic from healthy children, with prostaglandin, fatty acid and glycerophospholipid as putative markers. The three-week course of BDP-in spite of a significant clinical improvement-was not associated with changes in EBC metabolic arrangement and urinary steroid profile.

10.
Pediatr Pulmonol ; 55(2): 418-425, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31821737

RESUMEN

BACKGROUND: Available diagnostics often fail to distinguish viral from bacterial causes of pediatric community-acquired pneumonia (pCAP). Metabolomics, which aims at characterizing diseases based on their metabolic signatures, has been applied to expand pathophysiological understanding of many diseases. In this exploratory study, we used the untargeted metabolomic analysis to shed new light on the etiology of pCAP. METHODS: Liquid chromatography coupled with mass spectrometry was used to quantify the metabolite content of urine samples collected from children hospitalized for CAP of pneumococcal or viral etiology, ascertained using a conservative algorithm combining microbiological and biochemical data. RESULTS: Fifty-nine children with CAP were enrolled over 16 months. Pneumococcal and viral cases were distinguished by means of a multivariate model based on 93 metabolites, 20 of which were identified and considered as putative biomarkers. Among these, six metabolites belonged to the adrenal steroid synthesis and degradation pathway. CONCLUSIONS: This preliminary study suggests that viral and pneumococcal pneumonia differently affect the systemic metabolome, with a stronger disruption of the adrenal steroid pathway in pneumococcal pneumonia. This finding may lead to the discovery of novel diagnostic biomarkers and bring us closer to personalized therapy for pCAP.


Asunto(s)
Infecciones Comunitarias Adquiridas/metabolismo , Neumonía Neumocócica/metabolismo , Neumonía Viral/metabolismo , Algoritmos , Biomarcadores/metabolismo , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Metaboloma , Metabolómica
11.
Metabolites ; 9(9)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527391

RESUMEN

Urine metabolomics case-control studies of childhood asthma have demonstrated a discriminative ability. Here, we investigated whether urine metabolic profiles from healthy neonates were associated with the development of asthma in childhood. Untargeted metabolomics by liquid chromatography-mass spectrometry was applied to urine samples collected at age 4 weeks in 171 and 161 healthy neonates born from mothers with asthma from the COPSAC2000 and COPSAC2010 cohorts, respectively, where persistent wheeze/asthma was prospectively diagnosed using a symptom-based algorithm. Univariate and multivariate analyses were applied to investigate differences in metabolic profiles between children who developed asthma and healthy children. Univariate analysis showed 63 and 87 metabolites (q-value < 0.15) in COPSAC2000 and COPSAC2010, respectively, which is promising for discriminating between asthmatic and healthy children. Of those, 14 metabolites were common among the two cohorts. Multivariate random forest and projection to latent structures discriminant analyses confirmed the discriminatory capacity of the metabolic profiles in both cohorts with estimated errors in prediction equal to 35% and AUCpred > 0.60. Database search enabled annotation of three discriminative features: a glucoronidated compound (steroid), 3-hydroxytetradecanedioic acid (fatty acid), and taurochenodeoxycholate-3-sulfate (bile acid). The urine metabolomics profiles from healthy neonates were associated with the development of childhood asthma, but further research is needed to understand underlying metabolic pathways.

12.
Pulm Pharmacol Ther ; 58: 101818, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31302340

RESUMEN

BACKGROUND: Many preschool children develop recurrent respiratory tract infections (RRI). Strategies to prevent RRI include the use of immunomodulators as pidotimod or probiotics, but there is limited evidence of their efficacy on clinical features or on urine metabolic profile. OBJECTIVE: To evaluate whether pidotimod and/or bifidobacteria can reduce RRI morbidity and influence the urine metabolic profile in preschool children. MATERIALS AND METHODS: Children aged 3-6 years with RRI were enrolled in a four-arm, exploratory, prospective, randomized, double-blinded, placebo-controlled trial. Patients were randomly assigned to receive pidotimod plus bifidobacteria, pidotimod plus placebo, bifidobacteria plus placebo or double placebo for the first 10 days of each month over 4 consecutive months. Respiratory symptoms and infections were recorded with a daily diary by parents during the study. Metabolomic analyses on urine samples collected before and after treatment were performed. RESULTS: Compared to placebo, children receiving pidotimod, alone or with bifidobacteria, had more symptom-free days (69 versus 44, p = 0.003; and 65 versus 44, p = 0.02, respectively) and a lower percentage of days with common cold (17% versus 37%, p = 0.005; and 15% versus 37%, p = 0.004, respectively). The metabolomic analysis showed that children treated with Pidotimod (alone or in combination with bifidobacteria) present, respect to children treated with placebo, a biochemical profile characterized by compounds related to the pathway of steroids hormones, hippuric acid and tryptophan. No significant difference in the metabolic profile was found between children receiving bifidobacteria alone and controls. CONCLUSIONS: Preschool children with RRI treated with pidotimod have better clinical outcomes and a different urine metabolomic profile than subjects receiving placebo. Further investigations are needed to clarify the connection between pidotimod and gut microbiome.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Bifidobacterium , Probióticos/farmacología , Ácido Pirrolidona Carboxílico/análogos & derivados , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Tiazolidinas/uso terapéutico , Niño , Preescolar , Femenino , Humanos , Placebos , Embarazo , Estudios Prospectivos , Ácido Pirrolidona Carboxílico/uso terapéutico , Esfuerzo de Parto
13.
Methods Mol Biol ; 2030: 153-172, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31347117

RESUMEN

Enzyme deficiencies in amino acid metabolism may increase the levels of a single or several compounds in physiological fluids becoming diagnostically significant biomarkers for one or a group of metabolic disorders. Therefore, it is important to monitor a wide range of free amino acids simultaneously and to quantify them. This is time consuming if we use the classical methods and, especially now that many laboratories have introduced Newborn Screening Programs for the semiquantitative analysis, the detection and quantification of some amino acids need to be performed in a short time to reduce the rate of false positives.We have modified the stable isotope dilution HPLC-ESI-MS/MS method previously described by Qu (Qu et al., 2002) for a more rapid, robust, sensitive, and specific detection and quantification of underivatized amino acids. The modified method reduces the time of analysis to 10 min with very good reproducibility of retention times and a better separation of the metabolites and their isomers.The omission of the derivatization step, enabled to achieve some important advantages: fast and simple sample preparation, exclusion of artifacts, and interferences. The use of this technique is highly sensitive and specific and allowed to monitor 40 underivatized amino acids including the key isomers and quantification of some of them, in order to cover many diagnostically important intermediates of metabolic pathways.We propose this HPLC-ESI-MS/MS method for underivatized amino acids as a support for the newborn screening as secondary test using the same dried blood spots for a more accurate and specific examination in case of suspected metabolic diseases. In this way we avoid plasma collection from the patient as it normally occurs, reducing anxiety for the parents and further costs for analysis.The same method was validated and applied also to plasma and urine samples with good reproducibility, accuracy, and precision. The fast run time, the feasibility of high sample throughput, and the small amount of sample required make this method very suitable for routine analysis in the clinical setting.


Asunto(s)
Aminoácidos/análisis , Errores Innatos del Metabolismo/diagnóstico , Tamizaje Neonatal/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Pruebas con Sangre Seca/instrumentación , Pruebas con Sangre Seca/métodos , Humanos , Recién Nacido , Isomerismo , Errores Innatos del Metabolismo/sangre , Errores Innatos del Metabolismo/orina , Tamizaje Neonatal/instrumentación , Reproducibilidad de los Resultados , Manejo de Especímenes/métodos , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Espectrometría de Masas en Tándem/instrumentación
14.
J Infect Dis ; 219(8): 1216-1223, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30445537

RESUMEN

BACKGROUND: Bronchiolitis is associated with a greater risk of developing recurrent wheezing, but with currently available tools, it is impossible to know which infants with bronchiolitis will develop this condition. This preliminary prospective study aimed to assess whether urine metabolomic analysis can be used to identify children with bronchiolitis who are at risk of developing recurrent wheezing. METHODS: Fifty-two infants <1 year old treated in the emergency department at University Hospital of Padova for acute bronchiolitis were enrolled (77% tested positive for respiratory syncytial virus [RSV]). Follow-up visits were conducted for 2 years after the episode of bronchiolitis. Untargeted metabolomic analyses based on mass spectrometry were performed on urine samples collected from infants with acute bronchiolitis. Data modeling was based on univariate and multivariate data analyses. RESULTS: We distinguished children with and those without postbronchiolitis recurrent wheeze, defined as ≥3 episodes of physician-diagnosed wheezing. Pathway overrepresentation analysis pointed to a major involvement of the citric acid cycle (P < .001) and some amino acids (lysine, cysteine, and methionine; P ≤ .015) in differentiating between these 2 groups of children. CONCLUSION: This is the first study showing that metabolomic profiling of urine specimens from infants with bronchiolitis can be used to identify children at increased risk of developing recurrent wheezing.


Asunto(s)
Bronquiolitis/metabolismo , Metabolómica , Ruidos Respiratorios/etiología , Bronquiolitis/complicaciones , Bronquiolitis/orina , Estudios de Casos y Controles , Ácido Cítrico/orina , Ciclo del Ácido Cítrico , Cisteína/metabolismo , Cisteína/orina , Femenino , Humanos , Lactante , Recién Nacido , Lisina/metabolismo , Lisina/orina , Masculino , Redes y Vías Metabólicas , Metionina/metabolismo , Metionina/orina , Estudios Prospectivos , Recurrencia , Factores de Riesgo
15.
J Pediatr ; 196: 264-269.e4, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29548683

RESUMEN

OBJECTIVES: To apply metabolomic analysis of amniotic fluid in a discovery cohort to see whether a specific biochemical-metabolic profile at birth is associated with the subsequent onset of wheezing over the first year of life. STUDY DESIGN: This prospective exploratory study was conducted in a healthy term-born Dutch cohort recruited at 2 hospitals in Utrecht (UMCU, Utrecht, and Diakonessenhuis, Utrecht), The Netherlands. A metabolomic approach based on mass spectrometry was applied to analyze 142 amniotic fluid samples collected at birth. The infants were followed up during their first year of life with recording any respiratory symptoms daily, and they were classified according to the onset of wheezing. RESULTS: Orthogonally constrained projection to latent structures discriminant analysis was used to investigate differences in the metabolic profiles of the infants with (n = 86) and without (n = 56) wheezing. A search of the available databases for amniotic fluid metabolites identified by stability selection, combined with pathway analysis, highlighted the possible metabolic perturbations involved in this condition. The model built using 16 relevant variables with plausible biological significance, showed an area under the curve of 0.82 (P < .001) and an area under the curve calculated by 7-fold full cross-validation of 0.72 (P = .003), with the steroid hormone biosynthesis and the 2-phenylalanine metabolism emerging as probably perturbed pathways. CONCLUSIONS: Infants who will or will not experience wheezing in their first year of life have distinct amniotic fluid metabolomic profiles at birth. Changes occurring in biochemical-metabolic pathways in late intrauterine life may have a pathogenic role in early-onset wheezing.


Asunto(s)
Líquido Amniótico/metabolismo , Metaboloma , Ruidos Respiratorios/etiología , Área Bajo la Curva , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Espectrometría de Masas , Países Bajos , Embarazo , Estudios Prospectivos , Factores de Riesgo
16.
Pediatr Allergy Immunol ; 29(4): 375-382, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29468750

RESUMEN

BACKGROUND: Many children of preschool age present with recurrent wheezing. Most of them outgrow their symptoms, while some have early-onset asthma. Aim of this prospective preliminary study was to apply a metabolomic approach to see whether biochemical-metabolic urinary profiles can have a role in the early identification of the children with asthma. METHODS: Preschool children with recurrent wheezing were recruited and followed up for 3 years, after which they were classified as cases of transient wheezing or early-onset asthma. A urine sample was collected at recruitment and analyzed using a metabolomic approach based on UPLC mass spectrometry. RESULTS: Among 34 children aged 4.0 ± 1.1 years recruited, at the end of the 3-year follow-up, 16 were classified as having transient wheezing and 16 as cases of early-onset asthma. Through a joint multivariate and univariate statistical analyses, we identified a subset of metabolomic variables that enabled the 2 groups to be clearly distinguished. The model built using the identified variables showed an AUC = 0.99 and an AUC = 0.88 on sevenfold full cross-validation (P = .002). CONCLUSIONS: Metabolomic urinary profile can discriminate preschoolers with recurrent wheezing who will outgrow their symptoms from those who have early-onset asthma. These results may pave the way to the characterization of early non-invasive biomarkers capable of predicting asthma development.


Asunto(s)
Asma/diagnóstico , Metaboloma , Ruidos Respiratorios/fisiopatología , Edad de Inicio , Asma/orina , Biomarcadores/orina , Estudios de Casos y Controles , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Masculino , Metabolómica , Estudios Prospectivos , Recurrencia
17.
Clin Respir J ; 12(1): 140-148, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27216780

RESUMEN

INTRODUCTION: Asymmetric dimethylarginine (ADMA) competitively inhibits nitric oxide synthase (NOS). Its levels in specimens from murine models and asthmatic patients are related to inflammation and oxidative stress. Patients with cystic fibrosis(CF) reportedly have higher arginase activity, lower NO production and NOS expression than healthy controls. OBJECTIVE: The objective was to assess the role of ADMA and related metabolites as disease biomarkers in exhaled breath condensate (EBC) of pediatric CF patients, compared with age-matched healthy controls (HC). METHODS: A longitudinal design was conceived and 34 CF patients (21 stable, 13 at the onset of exacerbation) and 16 HC were enrolled. All CF patients underwent clinical examination, spirometry and EBC collection at enrolment; the same tests were performed also after an antibiotic course in those patients with exacerbation. Metabolites levels in EBC were measured with an ultra-performance liquid chromatography and tandem mass spectrometry technique. RESULTS: All CF patients had ADMA levels (expressed as ratio to tyrosine) similar to those in HC (median 0.0112, IQR 0.0103-0.0120 and median 0.0114, IQR 0.0090-0.0128, respectively; P = 0.983), while a significant increase in the citrulline/tyrosine ratio was found in CF patients (median 0.6419, IQR 0.5738-0.6899 in CF vs median 0.4176, IQR 0.2986-0.5082 in HC; P = 0.00003). No differences in ADMA levels emerged between stable patients and those with exacerbation. CONCLUSION: ADMA and related aminoacids were measured simultaneously for the first time in EBC from CF patients. Higher citrulline/tyrosine ratios were found in CF children with normal ADMA levels, suggesting a dysregulated ADMA metabolism in these patients.


Asunto(s)
Arginina/análogos & derivados , Fibrosis Quística/metabolismo , Volumen Espiratorio Forzado/fisiología , Adolescente , Arginina/análisis , Biomarcadores/análisis , Pruebas Respiratorias , Niño , Cromatografía Líquida de Alta Presión , Fibrosis Quística/fisiopatología , Progresión de la Enfermedad , Espiración , Femenino , Estudios de Seguimiento , Humanos , Masculino , Espectrometría de Masas , Estudios Prospectivos
18.
Pediatr Diabetes ; 19(1): 59-67, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28401628

RESUMEN

OBJECTIVE: Using an untargeted metabolomics approach we investigated the metabolome of children with type 1 diabetes (T1D) in comparison with healthy peers and explored the contribution of HbA1c and clinical features to the observed difference. RESEARCH DESIGN AND METHODS: We enrolled children with T1D aged 6-15 years, attending the pediatric diabetes clinic of University of Padova (Italy). Healthy controls were enrolled on voluntary basis and matched for age, sex, pubertal status, body mass index (BMI). We performed a liquid chromatography and mass spectrometry analysis (LC-MS) on fasting urinary samples of the 2 groups. RESULTS: A total of 56 patients with T1D aged (11.4 ± 2.2) years, and 30 healthy controls (10.7 ± 2.8) years were enrolled. We identified 59 urinary metabolites having a higher level in children with T1D, mainly represented by gluco- and mineralcorticoids, phenylalanine and tryptophan catabolites (kynurenine), small peptides, glycerophospholipids, fatty acids, and gut bacterial products. We did not find any association between HbA1c, pubertal status, disease duration, and metabolome profile within the case group. CONCLUSIONS: T1D profoundly disrupts the metabolome of pediatric patients. The excess of cortisol and aldosterone may contribute to the development of macrovascular complications in adulthood, while the increase of tryptophan derivates may have a role in neuronal damage associated to hyperglycemia. Determinants of such findings, other than HbA1c, should be explored.


Asunto(s)
Diabetes Mellitus Tipo 1/orina , Metaboloma , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Metabolómica
19.
Chem Phys Lipids ; 204: 43-56, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28300538

RESUMEN

Bile acid synthesis defects are rare genetic disorders characterized by a failure to produce normal bile acids (BAs), and by an accumulation of unusual and intermediary cholanoids. Measurements of cholanoids in urine samples by mass spectrometry are a gold standard for the diagnosis of these diseases. In this work improved methods for the chemical synthesis of 30 BAs conjugated with glycine, taurine and sulfate were developed. Diethyl phosphorocyanidate (DEPC) and diphenyl phosphoryl azide (DPPA) were used as coupling reagents for glycine and taurine conjugation. Sulfated BAs were obtained by sulfur trioxide-triethylamine complex (SO3-TEA) as sulfating agent and thereafter conjugated with glycine and taurine. All products were characterized by NMR, IR spectroscopy and high resolution mass spectrometry (HRMS). The use of these compounds as internal standards allows an improved accuracy of both identification and quantification of urinary bile acids.


Asunto(s)
Ácidos y Sales Biliares/orina , Glicina/química , Errores Innatos del Metabolismo/orina , Sulfatos/química , Taurina/química , Ácidos y Sales Biliares/síntesis química , Ácidos y Sales Biliares/normas , Glicina/normas , Humanos , Conformación Molecular , Espectrometría de Masa por Ionización de Electrospray/normas , Sulfatos/normas , Espectrometría de Masas en Tándem/normas , Taurina/normas
20.
Pharmacol Res ; 115: 162-167, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27888158

RESUMEN

Recurrent respiratory infections (RRI) represent a widespread condition which has a severe social and economic impact. Immunostimulants are used for their prevention. It is crucial to better characterize children with RRI to refine their diagnosis and identify effective personalized prevention strategies. Metabolomics is a high-dimensional biological method that can be used for hypothesis-free biomarker profiling, examining a large number of metabolites in a given sample using spectroscopic techniques. Multivariate statistical data analysis then enables us to infer which metabolic information is relevant to the biological characterization of a given physiological or pathological condition. This can lead to the emergence of new, sometimes unexpected metabolites, and hitherto unknown metabolic pathways, enabling the formulation of new pathogenetic hypotheses, and the identification of new therapeutic targets. The aim of our pilot study was to apply mass-spectrometry-based metabolomics to the analysis of urine samples from children with RRI, comparing these children's biochemical metabolic profiles with those of healthy peers. We also compared the RRI children's and healthy controls' metabolomic urinary profiles after the former had received pidotimod treatment for 3 months to see whether this immunostimulant was associated with biochemical changes in the RRI children's metabolic profile. 13 children (age range 3-6 yeas) with RRI and 15 matched per age healthy peers with no history of respiratory diseases or allergies were enrolled. Their metabolomic urine samples were compared before and after the RRI children had been treated with pidotimod for a period of 3 months. Metabolomic analyses on the urine samples were done using mass spectrometry combined with ultra-performance liquid chromatography (UPLC-MS). The resulting spectroscopic data then underwent multivariate statistical analysis and the most relevant variables characterizing the two groups were identified. Data modeling with post-transformation of PLS2-Discriminant Analysis (ptPLS2-DA) generated a robust model capable of discriminating the urine samples from children with RRI from those of healthy controls (R2=0.92,Q2CV7-fold=0.75, p-value<0.001). The dataset included 1502 time per mass variables, and 138 of them characterized the difference between the two groups. Thirty-five of these distinctive 138 variables persisted in the profiles of the children with RRI after pidotimod treatment. Metabolomics can discriminate children with RRI from healthy controls, suggesting that the former have a dysregulated metabolic profile. Among the variables characterizing children with RRI there are metabolites that may reflect the presence of a different microbiome. After pidotimod treatment, the metabolic profile of the children with RRI was no longer very different from that of the healthy controls, except for the persistence of some microbiome-related variables. We surmise that pidotimod partially "restores" the altered metabolic profile of children with RRI, without modifying the metabolites related to the composition of the gut microbiota. In the light of these results, we hypothesize a potential synergic effect of the combined use of immunostimulants and probiotics for the purpose of prevention in children with RRI.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Microbiota/fisiología , Infecciones del Sistema Respiratorio/metabolismo , Biomarcadores/orina , Niño , Preescolar , Femenino , Humanos , Masculino , Metabolómica/métodos , Análisis Multivariante , Proyectos Piloto , Infecciones del Sistema Respiratorio/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...