Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Chem Inf Model ; 63(13): 3999-4011, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37347587

RESUMEN

The modulating effect of chemical compounds and therapeutics on gene transcription is well-reported and has been intensively studied for both clinical and research purposes. Emerging research points toward the utility of drug-induced transcriptional alterations in de novo molecular design and highlights the idea of phenotype-matching an expression signature of interest to the structures being designed. In this work, we build an autoencoder-based generative model, BiCEV, around this concept. Our generative autoencoder has demonstrably generated a set of new molecules from gene expression input with notable validity (96%), uniqueness (98%), and internal diversity (0.77). Further, we attempted to validate BiCEV by testing the model on gene-knockdown profiles and combined signatures of synergistic drug pairs. From these investigations, we found the designed structures to be consistently high in collective quality. However, when their similarities to the supposed functional equivalents as determined by shared targets were considered, the findings were somewhat mixed. In spite of this, we believe the generative model merits further development in conjunction with in vitro corroboration to lend itself to being an assistive tool for drug discovery experts, particularly to support the initial stages of hit identification and lead optimization.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Expresión Génica
3.
IEEE J Biomed Health Inform ; 26(10): 4913-4924, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34826300

RESUMEN

The elimination of ocular artifacts is critical in analyzing electroencephalography (EEG) data for various brain-computer interface (BCI) applications. Despite numerous promising solutions, electrooculography (EOG) recording or an eye-blink detection algorithm is required for the majority of artifact removal algorithms. This reliance can hinder the model's implementation in real-world applications. This paper proposes EEGANet, a framework based on generative adversarial networks (GANs), to address this issue as a data-driven assistive tool for ocular artifacts removal (source code is available at https://github.com/IoBT-VISTEC/EEGANet). After the model was trained, the removal of ocular artifacts could be applied calibration-free without relying on the EOG channels or the eye blink detection algorithms. First, we tested EEGANet's ability to generate multi-channel EEG signals, artifacts removal performance, and robustness using the EEG eye artifact dataset, which contains a significant degree of data fluctuation. According to the results, EEGANet is comparable to state-of-the-art approaches that utilize EOG channels for artifact removal. Moreover, we demonstrated the effectiveness of EEGANet in BCI applications utilizing two distinct datasets under inter-day and subject-independent schemes. Despite the absence of EOG signals, the classification performance of the signals processed by EEGANet is equivalent to that of traditional baseline methods. This study demonstrates the potential for further use of GANs as a data-driven artifact removal technique for any multivariate time-series bio-signal, which might be a valuable step towards building next-generation healthcare technology.


Asunto(s)
Artefactos , Electroencefalografía , Algoritmos , Parpadeo , Electroencefalografía/métodos , Electrooculografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador
4.
IEEE J Biomed Health Inform ; 25(4): 1305-1314, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32960771

RESUMEN

Recognizing movements during sleep is crucial for the monitoring of patients with sleep disorders, and the utilization of ultra-wideband (UWB) radar for the classification of human sleep postures has not been explored widely. This study investigates the performance of an off-the-shelf single antenna UWB in a novel application of sleep postural transition (SPT) recognition. The proposed Multi-View Learning, entitled SleepPoseNet or SPN, with time series data augmentation aims to classify four standard SPTs. SPN exhibits an ability to capture both time and frequency features, including the movement and direction of sleeping positions. The data recorded from 38 volunteers displayed that SPN with a mean accuracy of 73.7 ±0.8 % significantly outperformed the mean accuracy of 59.9 ±0.7 % obtained from deep convolution neural network (DCNN) in recent state-of-the-art work on human activity recognition using UWB. Apart from UWB system, SPN with the data augmentation can ultimately be adopted to learn and classify time series data in various applications.


Asunto(s)
Radar , Sueño , Humanos , Postura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...