Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 111(9): 090402, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24033005

RESUMEN

The quantum state ψ is a mathematical object used to determine the probabilities of different outcomes when measuring a physical system. Its fundamental nature has been the subject of discussions since the inception of quantum theory. Is it ontic, that is, does it correspond to a real property of the physical system? Or is it epistemic, that is, does it merely represent our knowledge about the system? Assuming a natural continuity assumption and a weak separability assumption, we show here that epistemic interpretations of the quantum state are in contradiction with quantum theory. Our argument is different from the recent proof of Pusey, Barrett, and Rudolph and it already yields a nontrivial constraint on ψ-epistemic models using a single copy of the system in question.

2.
Phys Rev Lett ; 110(10): 100504, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23521241

RESUMEN

Device-independent protocols use nonlocality to certify that they are performing properly. This is achieved via Bell experiments on entangled quantum systems, which are kept isolated from one another during the measurements. However, with present-day technology, perfect isolation comes at the price of experimental complexity and extremely low data rates. Here we argue that for device-independent randomness generation--and other device-independent protocols where the devices are in the same lab--we can slightly relax the requirement of perfect isolation and still retain most of the advantages of the device-independent approach, by allowing a little cross-talk between the devices. This opens up the possibility of using existent experimental systems with high data rates, such as Josephson phase qubits on the same chip, thereby bringing device-independent randomness generation much closer to practical application.

3.
Phys Rev Lett ; 106(22): 220501, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21702585

RESUMEN

In the distrustful quantum cryptography model the parties have conflicting interests and do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of the device-independent approach to cryptography is to do away with the latter assumption, and, consequently, significantly increase security. It is an open question whether the scope of this approach also extends to protocols in the distrustful cryptography model, thereby rendering them "fully" distrustful. In this Letter, we show that for bit commitment-one of the most basic primitives within the model-the answer is positive. We present a device-independent (imperfect) bit-commitment protocol, where Alice's and Bob's cheating probabilities are ≃0.854 and 3/4, which we then use to construct a device-independent coin flipping protocol with bias ≲0.336.

4.
Phys Rev Lett ; 104(17): 170401, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20482092

RESUMEN

Quantum systems that have never interacted can become nonlocally correlated through a process called entanglement swapping. To characterize nonlocality in this context, we introduce local models where quantum systems that are initially uncorrelated are described by uncorrelated local variables. This additional assumption leads to stronger tests of nonlocality. We show, in particular, that an entangled pair generated through entanglement swapping will already violate a Bell-type inequality for visibilities as low as 50% under our assumption.

5.
Nature ; 464(7291): 1021-4, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20393558

RESUMEN

Randomness is a fundamental feature of nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on non-locality-based and device-independent quantum information processing, we show that the non-local correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design a cryptographically secure random number generator that does not require any assumption about the internal working of the device. Such a strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately one metre. The observed Bell inequality violation, featuring near perfect detection efficiency, guarantees that 42 new random numbers are generated with 99 per cent confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA