Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
PLoS One ; 18(3): e0281661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36972235

RESUMEN

All life forms on earth ultimately descended from a primordial population dubbed the last universal common ancestor or LUCA via Darwinian evolution. Extant living systems share two salient functional features, a metabolism extracting and transforming energy required for survival, and an evolvable, informational polymer-the genome-conferring heredity. Genome replication invariably generates essential and ubiquitous genetic parasites. Here we model the energetic, replicative conditions of LUCA-like organisms and their parasites, as well as adaptive problem solving of host-parasite pairs. We show using an adapted Lotka-Volterra frame-work that three host-parasite pairs-individually a unit of a host and a parasite that is itself parasitized, therefore a nested parasite pair-are sufficient for robust and stable homeostasis, forming a life cycle. This nested parasitism model includes competition and habitat restriction. Its catalytic life cycle efficiently captures, channels and transforms energy, enabling dynamic host survival and adaptation. We propose a Malthusian fitness model for a quasispecies evolving through a host-nested parasite life cycle with two core features, rapid replacement of degenerate parasites and increasing evolutionary stability of host-nested parasite units from one to three pairs.


Asunto(s)
Parásitos , Animales , Interacciones Huésped-Parásitos , Ecosistema , Estadios del Ciclo de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...