Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400596, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822424

RESUMEN

Designing 3D mechanically robust and high-surface-area substrates for uniform and high-density deposition of metal-organic frameworks (MOFs) provide a promising strategy to enhance surface accessibility and application of these highly functional materials. Nanofibrous aerogel (NFA) with its highly porous self-supported structure composed of interconnected nanofibrous network offers an ideal platform in this regard. Herein, a facile one-pot strategy is introduced, which utilizes direct deposition of MOF on the nanofibrous surface of the NFAs. NFAs are synthesized using electrospun polyacrylonitrile/polyvinylpyrrolidone (PAN/PVP) polymer nanofibers containing zinc acetate (Zn(Ac)2), which are subjected to freeze drying and thermal treatment. The latter converts Zn(Ac)2 to zinc oxide (ZnO), providing the sites for MOF growth while also adding mechanical integrity to the NFAs through cyclization of the PAN. Exposure of the NFA to the vapor-phase of organic ligand, 2-methylimidazole (2-MeIm) enables in situ growth of zeolitic imidazolate framework-8 (ZIF-8) MOF on the NFA. ZIF-8 loading on the NFAs is further improved by more than tenfold by synthesizing ZnO nanorods/protrusions on the nanofibers, which enables more sites for MOF growth. These findings underscore a significant advancement in designing MOF-based hybrid aerogels, offering a streamlined approach for their use in diverse applications, from catalysis to sensing and water purification.

2.
Nat Food ; 4(2): 148-159, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37117858

RESUMEN

Sustainable practices that reduce food loss are essential for enhancing global food security. We report a 'wrap and plant' seed treatment platform to protect crops from soil-borne pathogens. Developed from the abundantly available wastes of banana harvest and recycled old, corrugated cardboard boxes via chemical-free pulping, these paper-like biodegradable seed wraps exhibit tunable integrity and bioavailability of loaded moieties. These wraps were used for nematode control on yam (Dioscorea cayenensis-rotundata) seed pieces in Benin, a major producer of this staple crop in the sub-Saharan African 'yam belt'. Our seed wraps loaded with ultra-low-volume abamectin (1/100 ≤ commercial formulation) consistently controlled yam nematode (Scutellonema bradys) populations while considerably increasing the yield at various locations over 2015-2018. Substantial reduction in post-harvest tuber weight loss and cracking was observed after 3 and 5 months of storage, contributing to increased value, nutrition and stakeholders' preference for the wrap and plant treatment.


Asunto(s)
Agricultores , Tubérculos de la Planta , Humanos , Benin , Biomasa , Semillas , Agricultura/métodos , Protección de Cultivos
3.
Mater Today Bio ; 16: 100440, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36204215

RESUMEN

Nucleic acids are programmable materials that can self-assemble into defined or stochastic three-dimensional network architectures. Various attributes of self-assembled, cross-linked Deoxyribonucleic acid (DNA) hydrogels have recently been investigated, including their mechanical properties and potential biomedical functions. Herein, for the first time, we describe the successful construction of pure DNA aerogels and DNA-wrapped carbon nanotube (CNT) composite (DNA-CNT) aerogels via a single-step freeze-drying of the respective hydrogels. These aerogels reveal highly porous and randomly branched structures with low density. The electrical properties of pure DNA aerogel mimic that of a simple capacitor; in contrast, the DNA-CNT aerogel displays a fascinating resistive switching behavior in response to an applied bias voltage sweep reminiscent of a volatile memristor. We believe these novel aerogels can serve as a platform for developing complex biomimetic devices for a wide range of applications, including real-time computation, neuromorphic computing, biochemical sensing, and biodegradable functional implants. More importantly, insight obtained here on self-assembling DNA to create aerogels will pave the way to construct novel aerogel-based material platforms from DNA coated or wrapped functional entities.

4.
Adv Mater ; 33(51): e2102892, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34608687

RESUMEN

The brittle nature of early aerogels developed from inorganic precursors fueled the discovery of their organic counterparts. Prominent among these organics are cellulose aerogels because of their natural abundance, biocompatibility, sustainable precursors, and tunable properties. The hierarchical structure of cellulose, from polymers to nano/microfibers, further facilitates fabrication of materials across multiple length scales with added applicability. However, the inherent flammability, structural fragility, and low thermal stability have limited their use. Recently developed cellulose-based hybrid aerogels offer strong potential owing to their tunability and enhanced functionality brought about by combining the inherent properties of cellulose with organic and inorganic components. A survey of the historical background and scientific achievements in the design and development of cellulose-based hybrid aerogel materials is encompassed here. The impacts of incorporating organic and inorganic ingredients with cellulose and the corresponding synergistic effects are discussed in terms of their design and functionality. The underlying principles governing the structural integration and functionality enhancement are also analyzed. The latest developments of cellulose-based hybrid aerogels fabricated from nontraditional incipient aerogels, such as fibrous webs, are also explored. Finally, future opportunities that could make these materials achieve even greater impacts through improved scalability, rationally designed synthesis, and multifunctional properties are discussed.

5.
J Colloid Interface Sci ; 596: 479-492, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33866080

RESUMEN

HYPOTHESIS: The high surface area and branched structure of fumed silica (FS) can be exploited in concert with the hydrophobic properties of polydimethylsiloxane (PDMS) and robustness of polyurethane (PU) to create PDMS-PU and FS grafted coatings with hierarchical structures and enhanced functionalities. The structural features of FS would add to superhydrophobicity; its open-branchlike characteristics would provide air permeability; the use of a tiered coating approach involving a FS-only layer on top of the PDMS-PU coat would create interlocking and strong abrasion-resistance, leading to a multifunctional coating with potential application in filtration and personal protection equipment (PPE). EXPERIMENTS: PDMS-PU and PDMS-PU-Si copolymer dispersions are synthesized with different monomer molecular weights and FS concentration. Hydrophobicity is measured via water contact angle and wetting resistance measurements. Abrasion resistance is compared by investigating the fiber morphology and hydrophobicity of the coated fabrics after various abrasion cycles. Air flow versus pressure drop experiments are used to measure breathability. Interaction mechanism between substrate/components are explored using infrared spectroscopy. FINDINGS: The interactions between the substrate, FS, and PDMS-PU can be manipulated to create a novel, tiered coating that exhibits superhydrophobicity, strong abrasion resistance together with desirable air-permeability, thereby providing a versatile and unique coating platform.

6.
Curr Opin Colloid Interface Sci ; 48: 121-136, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33013179

RESUMEN

Climate changes, emerging species of plant pests, and deficits of clean water and arable land have made availability of food to the ever-increasing global population a challenge. Excessive use of synthetic pesticides to meet ever-increasing production needs has resulted in development of resistance in pest populations, as well as significant ecotoxicity, which has directly and indirectly impacted all life-forms on earth. To meet the goal of providing safe, sufficient, and high-quality food globally with minimal environmental impact, one strategy is to focus on targeted delivery of pesticides using eco-friendly and biodegradable carriers that are derived from naturally available materials. Herein, we discuss some of the recent approaches to use biodegradable matrices in crop protection, while exploring their design and efficiency. We summarize by discussing associated challenges with the existing approaches and future trends that can lead the world to more sustainable agricultural practices.

7.
ACS Sustain Chem Eng ; 8(17): 6590-6600, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32391214

RESUMEN

Controlled release and targeted delivery of agrochemicals are crucial for achieving effective crop protection with minimal damage to the environment. This work presents an innovative and cost-effective approach to fabricate lignocellulose-based biodegradable porous matrices capable of slow and sustained release of the loaded molecules for effective crop protection. The matrix exhibits tunable physicochemical properties which, when coupled with our unique "wrap-and-plant" concept, help to utilize it as a defense against soil-borne pests while providing controlled release of crop protection moieties. The tailored matrix is produced by mechanical treatment of the lignocellulosic fibers obtained from banana plants. The effect of different extents of mechanical treatments of the lignocellulosic fibers on the protective properties of the developed matrices is systematically investigated. While variation in mechanical treatment affects the morphology, strength, and porosity of the matrices, the specific composition and structure of the fibers are also capable of influencing their release profile. To corroborate this hypothesis, the effect of morphology and lignin content changes on the release of rhodamine B and abamectin as model cargos is investigated. These results, compared with those of the matrices developed from non-banana fibrous sources, reveal a unique release profile of the matrices developed from banana fibers, thereby making them strong candidates for crop protection applications.

8.
ACS Omega ; 4(6): 10767-10774, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31460174

RESUMEN

We present a facile approach to electrospin nanofibers of guar galactomannan by blending high- and low-molecular weights (MWs) of guar. We discover that while neither native high MW guar nor hydrolyzed low MW guar is electrospinnable on its own, their combination leads to synergism in producing defect-free nanofibers. Such an approach of fabricating nanofibers from blending multiple MWs of the same polymer may provide an easy route to produce nanofibers of biopolymers which are typically hard to electrospin. Rheological studies reveal that a limiting amount of native guar is needed for electrospinnability, and for those systems that have the proportionate amount of native guar, there is a critical total concentration above which fibers form. Interestingly, a plot of blend viscosity versus guar concentration reveals two power-law regimes with an inflection point, above which fiber formation can be achieved akin to the behavior observed for pure (i.e., nonblend) polymers.

9.
Langmuir ; 30(51): 15504-13, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25474752

RESUMEN

A controlled sol-gel synthesis incorporated with electrospinning is employed to produce polyacrylonitrile-silica (PAN-silica) fibers. Hybrid fibers are obtained with varying amounts of silica precursor (TEOS in DMF catalyzed by HCl) and PAN. Solution viscosity, conductivity, and surface tension are found to relate strongly to the electrospinnability of PAN-silica solutions. TGA and DSC analyses of the hybrids indicate strong intermolecular interactions, possibly between the -OH group of silica and -CN of PAN. Thermal stabilization of the hybrids at 280 °C followed by carbonization at 800 °C transforms fibers to carbon-silica hybrid nanofibers with smooth morphology and diameter ranging from 400 to 700 nm. FTIR analysis of the fibers confirms the presence of silica in the as-spun as well as the carbonized material, where the extent of carbonization is also estimated by confirming the presence of -C═C and -C═O peaks in the carbonized hybrids. The graphitic character of the carbon-silica fibers is confirmed through Raman studies, and the role of silica in the disorder of the carbon structure is discussed.

10.
Langmuir ; 28(13): 5834-44, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22394080

RESUMEN

We report on the synthesis of poly(vinyl alcohol) (PVA)-silica hybrid nanofibers via sol-gel electrospinning. Silica is synthesized through acid catalysis of a silica precursor (tetraethyl orthosilicate (TEOS) in ethanol-water), and fibers are obtained by electrospinning a mixture of the silica precursor solution and aqueous PVA. A systematic investigation on how the amount of TEOS, the silica-PVA ratio, the aging time of the silica precursor mixture, and the solution rheology influence the fiber morphology is undertaken and reveals a composition window in which defect-free hybrid nanofibers with diameters as small as 150 nm are obtained. When soaked overnight in water, the hybrid fibers remain intact, essentially maintaining their morphology, even though PVA is soluble in water. We believe that mixing of the silica precursor and PVA in solution initiates the participation of the silica precursor in cross-linking of PVA so that its -OH group becomes unavailable for hydrogen bonding with water. FTIR analysis of the hybrids confirms the disappearance of the -OH peak typically shown by PVA, while formation of a bond between PVA and silica is indicated by the Si-O-C peak in the spectra of all the hybrids. The ability to form cross-linked nanofibers of PVA using thermally stable and relatively inert silica could broaden the scope of use of these materials in various technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...