Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 538, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36725847

RESUMEN

Interfaces in heavy metal (HM) - antiferromagnetic insulator (AFI) heterostructures have recently become highly investigated and debated systems in the effort to create spintronic devices that function at terahertz frequencies. Such heterostructures have great technological potential because AFIs can generate sub-picosecond spin currents which the HMs can convert into charge signals. In this work we demonstrate an optically induced picosecond spin transfer at the interface between AFIs and Pt using time-domain THz emission spectroscopy. We select two antiferromagnets in the same family of fluoride cubic perovskites, KCoF3 and KNiF3, whose magnon frequencies at the centre of the Brillouin zone differ by an order of magnitude. By studying their behaviour with temperature, we correlate changes in the spin transfer efficiency across the interface to the opening of a gap in the magnon density of states below the Néel temperature. Our observations are reproduced in a model based on the spin exchange between the localized electrons in the antiferromagnet and the free electrons in Pt. Through this comparative study of selected materials, we are able to shine light on the microscopy of spin transfer at picosecond timescales between antiferromagnets and heavy metals and identify a key figure of merit for its efficiency: the magnon gap. Our results are important for progressing in the fundamental understanding of the highly discussed physics of the HM/AFI interfaces, which is the necessary cornerstone for the designing of femtosecond antiferromagnetic spintronics devices with optimized characteristics.

2.
Science ; 374(6575): 1608-1611, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34941422

RESUMEN

Understanding spin-lattice coupling represents a key challenge in modern condensed matter physics, with crucial importance and implications for ultrafast and two-dimensional magnetism. The efficiency of angular momentum and energy transfer between spins and the lattice imposes fundamental speed limits on the ability to control spins in spintronics, magnonics, and magnetic data storage. We report on an efficient nonlinear mechanism of spin-lattice coupling driven by terahertz light pulses. A nearly single-cycle terahertz pulse resonantly interacts with a coherent magnonic state in the antiferromagnet cobalt difluoride (CoF2) and excites the Raman-active terahertz phonon. The results reveal the distinctive functionality of antiferromagnets that allows ultrafast spin-lattice coupling using light.

3.
Sci Adv ; 4(7): eaar5164, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30027115

RESUMEN

To gain control over magnetic order on ultrafast time scales, a fundamental understanding of the way electron spins interact with the surrounding crystal lattice is required. However, measurement and analysis even of basic collective processes such as spin-phonon equilibration have remained challenging. Here, we directly probe the flow of energy and angular momentum in the model insulating ferrimagnet yttrium iron garnet. After ultrafast resonant lattice excitation, we observe that magnetic order reduces on distinct time scales of 1 ps and 100 ns. Temperature-dependent measurements, a spin-coupling analysis, and simulations show that the two dynamics directly reflect two stages of spin-lattice equilibration. On the 1-ps scale, spins and phonons reach quasi-equilibrium in terms of energy through phonon-induced modulation of the exchange interaction. This mechanism leads to identical demagnetization of the ferrimagnet's two spin sublattices and to a ferrimagnetic state of increased temperature yet unchanged total magnetization. Finally, on the much slower, 100-ns scale, the excess of spin angular momentum is released to the crystal lattice, resulting in full equilibrium. Our findings are relevant for all insulating ferrimagnets and indicate that spin manipulation by phonons, including the spin Seebeck effect, can be extended to antiferromagnets and into the terahertz frequency range.

4.
Opt Express ; 23(25): 32736-46, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26699063

RESUMEN

We report the excitation of the non-steady-state photoelectro-motive force in a monoclinic gallium oxide crystal. The crystal grown in an oxygen atmosphere is insulating and highly transparent for a visible light, nevertheless, the formation of dynamic space-charge gratings and observation of the photo-EMF signal is achieved under the laser illumination with wavelength λ = 532 nm. The induced ac current is studied for the cases of zero and non-zero external electric fields, which imply the non-resonant and resonant mechanisms of space-charge recording. The dependencies of the signal amplitude versus the frequency of phase modulation, light intensity, spatial frequency, light polarization and value of the external dc electric field are measured. The material demonstrates the anisotropy along the [100] and [010] directions, namely, there is a weak difference of the transport parameters and a pronounced polarization dependence of the signal. The photoconductivity and diffusion length of electrons are estimated for the chosen light wavelength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA