Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(29): eadl5638, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39018414

RESUMEN

Viruses can selectively repress the translation of mRNAs involved in the antiviral response. RNA viruses exploit the Grb10-interacting GYF (glycine-tyrosine-phenylalanine) proteins 2 (GIGYF2) and eukaryotic translation initiation factor 4E (eIF4E) homologous protein 4EHP to selectively repress the translation of transcripts such as Ifnb1, which encodes the antiviral cytokine interferon-ß (IFN-ß). Herein, we reveal that GIGYF1, a paralog of GIGYF2, robustly represses cellular mRNA translation through a distinct 4EHP-independent mechanism. Upon recruitment to a target mRNA, GIGYF1 binds to subunits of eukaryotic translation initiation factor 3 (eIF3) at the eIF3-eIF4G1 interaction interface. This interaction disrupts the eIF3 binding to eIF4G1, resulting in transcript-specific translational repression. Depletion of GIGYF1 induces a robust immune response by derepressing IFN-ß production. Our study highlights a unique mechanism of translational regulation by GIGYF1 that involves sequestering eIF3 and abrogating its binding to eIF4G1. This mechanism has profound implications for the host response to viral infections.


Asunto(s)
Factor 3 de Iniciación Eucariótica , Factor 4G Eucariótico de Iniciación , Unión Proteica , ARN Mensajero , Factor 4G Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 3 de Iniciación Eucariótica/genética , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Interferón beta/metabolismo , Interferón beta/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Iniciación de la Cadena Peptídica Traduccional , Animales , Biosíntesis de Proteínas , Regulación de la Expresión Génica
2.
Nat Chem Biol ; 20(6): 761-769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38308044

RESUMEN

Engineered biosynthetic assembly lines could revolutionize the sustainable production of bioactive natural product analogs. Although yeast display is a proven, powerful tool for altering the substrate specificity of gatekeeper adenylation domains in nonribosomal peptide synthetases (NRPSs), comparable strategies for other components of these megaenzymes have not been described. Here we report a high-throughput approach for engineering condensation (C) domains responsible for peptide elongation. We show that a 120-kDa NRPS module, displayed in functional form on yeast, can productively interact with an upstream module, provided in solution, to produce amide products tethered to the yeast surface. Using this system to screen a large C-domain library, we reprogrammed a surfactin synthetase module to accept a fatty acid donor, increasing catalytic efficiency for this noncanonical substrate >40-fold. Because C domains can function as selectivity filters in NRPSs, this methodology should facilitate the precision engineering of these molecular assembly lines.


Asunto(s)
Péptido Sintasas , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/química , Especificidad por Sustrato , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ingeniería de Proteínas/métodos , Ensayos Analíticos de Alto Rendimiento , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...