Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 191: 106387, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142841

RESUMEN

INTRODUCTION: Purportedly, the progression of multiple sclerosis (MS) occurs when neurodegenerative processes due to derangement of axonal bioenergetics take over the autoimmune response. However, a clear picture of the causative interrelationship between autoimmunity and axonal mitochondrial dysfunction in progressive MS (PMS) pathogenesis waits to be provided. METHODS: In the present study, by adopting the NOD mouse model of PMS, we compared the pharmacological effects of the immunosuppressants dexamethasone and fingolimod with those of mTOR inhibitors rapamycin and everolimus that, in addition to immunosuppression, also regulate mitochondrial functioning. Female Non-Obese Diabetic (NOD) mice were immunized with MOG35-55 and treated with drugs to evaluate functional, immune and mitochondrial parameters during disease evolution. RESULTS: We found that dexamethasone and fingolimod did not affect the pattern of progression as well as survival. Conversely, mTOR inhibitors rapamycin and everolimus delayed disease progression and robustly extended survival of immunized mice. The same effects were obtained when treatment was delayed by 30 days after immunization. Remarkably, dexamethasone and fingolimod prompted the same degree of immunosuppression of rapamycin within both spleen and spinal cord of mice. However, only rapamycin prompted mitochondriogenesis by increasing mitochondrial content, and expression of several mitochondrial respiratory complex subunits, thereby preventing mtDNA reduction in the spinal cords of immunized mice. These pharmacodynamic effects were not reproduced in healthy NOD mice, suggesting a disease context-dependent pharmacodynamic effect. DISCUSSION: Data corroborate the key role of mitochondriogenesis to treatment of MS progression, and for the first time disclose the translational potential of mTOR inhibitors in PMS therapy.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Femenino , Animales , Ratones , Esclerosis Múltiple/patología , Inhibidores mTOR , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Neuroprotección , Everolimus/farmacología , Everolimus/uso terapéutico , Ratones Endogámicos NOD , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Sirolimus/farmacología , Sirolimus/uso terapéutico , Dexametasona/farmacología , Encefalomielitis Autoinmune Experimental/patología , Ratones Endogámicos C57BL
2.
Neurobiol Dis ; 178: 106015, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702320

RESUMEN

INTRODUCTION: Derangement of axonal mitochondrial bioenergetics occurs during progressive multiple sclerosis (PMS). However, whether this is a delayed epiphenomenon or an early causative event of disease progression waits to be understood. Answering this question might further our knowledge of mechanisms underlying neurobiology of PMS and related therapy. METHODS: MOG35-55-immunized NOD and PLP139-151-immunized SJL female mice were adopted as models of progressive or relapsing-remitting experimental autoimmune encephalomyelitis (EAE), respectively. Multiple parameters of mitochondrial homeostasis were analyzed in the mouse spinal cord during the early asymptomatic stage, also evaluating the effects of scavenging mitochondrial reactive oxygen species with Mito-TEMPO. RESULTS: Almost identical lumbar spinal cord immune infiltrates consisting of Th1 cells and neutrophils without B and Th17 lymphocytes occurred early upon immunization in both mouse strains. Still, only NOD mice showed axon-restricted dysregulation of mitochondrial homeostasis, with reduced mtDNA contents and increased cristae area. Increased expression of mitochondrial respiratory complex subunits Nd2, Cox1, Atp5d, Sdha also exclusively occurred in lumbar spinal cord of NOD and not SJL mice. Accordingly, in this region genes regulating mitochondrial morphology (Opa1, Mfn1, Mfn2 and Atp5j2) and mitochondriogenesis (Pgc1α, Foxo, Hif-1α and Nrf2) were induced early upon immunization. A reduced extent of mitochondrial derangement occurred in the thoracic spinal cord. Notably, the mitochondrial radical scavenger Mito-TEMPO reduced H2O2 content and prevented both mtDNA depletion and cristae remodeling, having no effects on dysregulation of mitochondrial transcriptome. DISCUSSION: We provide here the first evidence that axonal-restricted derangement of mitochondrial homeostasis already occurs during the asymptomatic state exclusively in a mouse model of PMS. Data further our understanding of mechanisms related to EAE progression, and point to very early axonal mitochondrial dysfunction as central to the neuropathogenesis of MS evolution.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Ratones , Femenino , Animales , Esclerosis Múltiple/patología , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos NOD , Encefalomielitis Autoinmune Experimental/patología , Médula Espinal/patología , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Axones/patología , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo
3.
J Pain ; 23(11): 1874-1884, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35700873

RESUMEN

Chronic triptan exposure in rodents recapitulates medication overuse headache (MOH), causing cephalic pain sensitization and trigeminal ganglion overexpression of pronociceptive proteins including CGRP. Because of these transcriptional derangements, as well as the emerging role of epigenetics in chronic pain, in the present study, we evaluated the effects of the histone deacetylase inhibitors (HDACis) panobinostat and givinostat, in rats chronically exposed to eletriptan for 1 month. Both panobinostat and givinostat counteracted overexpression of genes coding for CGRP and its receptor subunit RAMP1, having no effects on CLR and RCP receptor subunits in the trigeminal ganglion (TG) of eletriptan-exposed rats. Within the trigeminal nucleus caudalis (TNc), transcripts for these genes were neither upregulated by eletriptan nor altered by concomitant treatment with panobinostat or givinostat. HDACis counteracted hypersensitivity to capsaicin-induced vasodilatation in the trigeminal territory, as well as photophobic behavior and cephalic allodyniain eletriptan-exposed rats. Eletriptan did not affect CGRP, CLR, and RAMP1 expression in cultured trigeminal ganglia, whereas both inhibitors reduced transcripts for CLR and RAMP-1. The drugs, however, increased luciferase expression driven by CGRP promoter in cultured cells. Our findings provide evidence for a key role of HDACs and epigenetics in MOH pathogenesis, highlighting the therapeutic potential of HDAC inhibition in the prevention of migraine chronification. PERSPECTIVE: The present study highlights a key epigenetic role of HDAC in the rodent model of medication overuse headache, furthering our understanding of the molecular mechanisms responsible for pronociceptive sensitization during headache chronification.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Cefaleas Secundarias , Ratas , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Inhibidores de Histona Desacetilasas/efectos adversos , Inhibidores de Histona Desacetilasas/metabolismo , Panobinostat/efectos adversos , Ganglio del Trigémino/metabolismo , Cefalea
4.
Cephalalgia ; 42(8): 798-803, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35166148

RESUMEN

OBJECTIVE: To investigate how cluster headache preventatives verapamil, lithium and prednisone affect expression of hypothalamic genes involved in chronobiology. METHODS: C57Bl/6 mice were exposed to daily, oral treatment with verapamil, lithium, prednisone or amitriptyline (as negative control), and transcripts of multiple genes quantified in the anterior, lateral and posterior hypothalamus. RESULTS: Verapamil, lithium or prednisone did not affect expression of clock genes of the anterior hypothalamus (Clock, Bmal1, Cry1/2 and Per1/2). Prednisone altered expression of hypothalamic neuropeptides melanin-concentrating hormone and histidine decarboxylase within the lateral and posterior hypothalamus, respectively. The three preventatives did not affect expression of the neurohypophyseal hormones oxytocin and arginine-vasopressin in the posterior hypothalamus. Conversely, amitriptyline reduced mRNA levels of Clock, oxytocin and arginine-vasopressin. CONCLUSION: Data suggest that cluster headache preventatives act upstream or downstream from the hypothalamus. Our findings provide new insights on hypothalamic homeostasis during cluster headache prophylaxis, as well as neurochemistry underlying cluster headache treatment.


Asunto(s)
Proteínas CLOCK , Cefalalgia Histamínica , Oxitocina , Amitriptilina , Animales , Arginina , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Cefalalgia Histamínica/genética , Cefalalgia Histamínica/metabolismo , Homeostasis , Hipotálamo , Litio/metabolismo , Litio/farmacología , Ratones , Oxitocina/metabolismo , Prednisona , Verapamilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA