Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39039207

RESUMEN

CD47 is a ubiquitously expressed cell surface receptor, which is widely known for preventing macrophage-mediated phagocytosis by interacting with signal regulatory protein α (SIRPα) on the surface of macrophages. In addition to its role in phagocytosis, emerging studies have reported numerous noncanonical functions of CD47 that include regulation of various cellular processes such as proliferation, migration, apoptosis, differentiation, stress responses, and metabolism. Despite lacking an extensive cytoplasmic signaling domain, CD47 binds to several cytoplasmic proteins, particularly upon engaging with its secreted matricellular ligand, thrombospondin 1. Indeed, the regulatory functions of CD47 are greatly influenced by its interacting partners. These interactions are often cell- and context-specific, adding a further level of complexity. This review addresses the downstream cell-intrinsic signaling pathways regulated by CD47 in various cell types and environments. Some of the key pathways modulated by this receptor include the PI3K/AKT, MAPK/ERK, and nitric oxide signaling pathways, as well as those implicated in glucose, lipid, and mitochondrial metabolism. These pathways play vital roles in maintaining tissue homeostasis, highlighting the importance of understanding the phagocytosis-independent functions of CD47. Given that CD47 expression is dysregulated in a variety of cancers, improving our understanding of the cell-intrinsic signals regulated by this molecule will help advance the development of CD47-targeted therapies.

2.
Clin Transl Immunology ; 13(7): e1519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975278

RESUMEN

Objectives: CAR-T cells are being investigated as a novel immunotherapy for glioblastoma, but clinical success has been limited. We recently described fibroblast activation protein (FAP) as an ideal target antigen for glioblastoma immunotherapy, with expression on both tumor cells and tumor blood vessels. However, CAR-T cells targeting FAP have never been investigated as a therapy for glioblastoma. Methods: We generated a novel FAP targeting CAR with CD3ζ and CD28 signalling domains and tested the resulting CAR-T cells for their lytic activity and cytokine secretion function in vitro (using real-time impedance, flow cytometry, imaging and bead-based cytokine assays), and in vivo (using a xenograft mimicking the natural heterogeneity of human glioblastoma). Results: FAP-CAR-T cells exhibited target specificity against model cell lines and potent cytotoxicity against patient-derived glioma neural stem cells, even when only a subpopulation expressed FAP, indicating a bystander killing mechanism. Using co-culture assays, we confirmed FAP-CAR-T cells mediate bystander killing of antigen-negative tumor cells, but only after activation by FAP-positive target cells. This bystander killing was at least partially mediated by soluble factors and amplified by IL-2 which activated the non-transduced fraction of the CAR-T product. Finally, a low dose of intravenously administered FAP-CAR-T cells controlled, without overt toxicity, the growth of subcutaneous tumors created using a mixture of antigen-negative and antigen-positive glioblastoma cells. Conclusions: Our findings advance FAP as a leading candidate for clinical CAR-T therapy of glioblastoma and highlight under-recognised antigen nonspecific mechanisms that may contribute meaningfully to the antitumor activity of CAR-T cells.

3.
Cell Death Dis ; 15(6): 413, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866760

RESUMEN

Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales
4.
J Invest Dermatol ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582367

RESUMEN

Chronic non-healing wounds negatively impact quality of life and are a significant financial drain on health systems. The risk of infection that exacerbates comorbidities in patients necessitates regular application of wound care. Understanding the mechanisms underlying impaired wound healing are therefore a key priority to inform effective new-generation treatments. In this study, we demonstrate that 14-3-3-mediated suppression of signaling through ROCK is a critical mechanism that inhibits the healing of diabetic wounds. Accordingly, pharmacological inhibition of 14-3-3 by topical application of the sphingo-mimetic drug RB-11 to diabetic wounds on a mouse model of type II diabetes accelerated wound closure more than 2-fold than vehicle control, phenocopying our previous observations in 14-3-3ζ-knockout mice. We also demonstrate that accelerated closure of the wounded epidermis by 14-3-3 inhibition causes enhanced signaling through the Rho-ROCK pathway and that the underlying cellular mechanism involves the efficient recruitment of dermal fibroblasts into the wound and the rapid production of extracellular matrix proteins to re-establish the injured dermis. Our observations that the 14-3-3/ROCK inhibitory axis characterizes impaired wound healing and that its suppression facilitates fibroblast recruitment and accelerated re-epithelialization suggest new possibilities for treating diabetic wounds by pharmacologically targeting this axis.

5.
EMBO Rep ; 25(2): 704-724, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263327

RESUMEN

TFEB is a master regulator of autophagy, lysosome biogenesis, mitochondrial metabolism, and immunity that works primarily through transcription controlled by cytosol-to-nuclear translocation. Emerging data indicate additional regulatory interactions at the surface of organelles such as lysosomes. Here we show that TFEB has a non-transcriptional role in mitochondria, regulating the electron transport chain complex I to down-modulate inflammation. Proteomics analysis reveals extensive TFEB co-immunoprecipitation with several mitochondrial proteins, whose interactions are disrupted upon infection with S. Typhimurium. High resolution confocal microscopy and biochemistry confirms TFEB localization in the mitochondrial matrix. TFEB translocation depends on a conserved N-terminal TOMM20-binding motif and is enhanced by mTOR inhibition. Within the mitochondria, TFEB and protease LONP1 antagonistically co-regulate complex I, reactive oxygen species and the inflammatory response. Consequently, during infection, lack of TFEB specifically in the mitochondria exacerbates the expression of pro-inflammatory cytokines, contributing to innate immune pathogenesis.


Asunto(s)
Autofagia , Inflamación , Humanos , Inflamación/metabolismo , Citosol/metabolismo , Transporte Activo de Núcleo Celular , Lisosomas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Mitocondriales/metabolismo , Proteasas ATP-Dependientes/metabolismo
6.
Br J Haematol ; 204(2): 566-570, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38053270

RESUMEN

While bortezomib has significant benefits in multiple myeloma (MM) therapy, the disease remains incurable due to the invariable development of bortezomib resistance. This emphasises the need for advanced models for preclinical evaluation of new therapeutic approaches for bortezomib-resistant MM. Here, we describe the development of an orthotopic syngeneic bortezomib-resistant MM mouse model based on the most well-characterised syngeneic MM mouse model derived from spontaneous MM-forming C57BL/KaLwRij mice. Using bortezomib-resistant 5TGM1 cells, we report and characterise a robust syngeneic mouse model of bortezomib-resistant MM that is well suited to the evaluation of new therapeutic approaches for proteasome inhibitor-resistant MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Animales , Ratones , Bortezomib/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Ratones Endogámicos C57BL , Inhibidores de Proteasoma/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Antineoplásicos/uso terapéutico
7.
Blood ; 142(17): 1448-1462, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37595278

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) rely on a complex interplay among transcription factors (TFs) to regulate differentiation into mature blood cells. A heptad of TFs (FLI1, ERG, GATA2, RUNX1, TAL1, LYL1, LMO2) bind regulatory elements in bulk CD34+ HSPCs. However, whether specific heptad-TF combinations have distinct roles in regulating hematopoietic differentiation remains unknown. We mapped genome-wide chromatin contacts (HiC, H3K27ac, HiChIP), chromatin modifications (H3K4me3, H3K27ac, H3K27me3) and 10 TF binding profiles (heptad, PU.1, CTCF, STAG2) in HSPC subsets (stem/multipotent progenitors plus common myeloid, granulocyte macrophage, and megakaryocyte erythrocyte progenitors) and found TF occupancy and enhancer-promoter interactions varied significantly across cell types and were associated with cell-type-specific gene expression. Distinct regulatory elements were enriched with specific heptad-TF combinations, including stem-cell-specific elements with ERG, and myeloid- and erythroid-specific elements with combinations of FLI1, RUNX1, GATA2, TAL1, LYL1, and LMO2. Furthermore, heptad-occupied regions in HSPCs were subsequently bound by lineage-defining TFs, including PU.1 and GATA1, suggesting that heptad factors may prime regulatory elements for use in mature cell types. We also found that enhancers with cell-type-specific heptad occupancy shared a common grammar with respect to TF binding motifs, suggesting that combinatorial binding of TF complexes was at least partially regulated by features encoded in DNA sequence motifs. Taken together, this study comprehensively characterizes the gene regulatory landscape in rare subpopulations of human HSPCs. The accompanying data sets should serve as a valuable resource for understanding adult hematopoiesis and a framework for analyzing aberrant regulatory networks in leukemic cells.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Células Madre Hematopoyéticas , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Hematopoyéticas/metabolismo , Regulación de la Expresión Génica , Hematopoyesis/genética , Cromatina/metabolismo
8.
Sci Rep ; 13(1): 13489, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596305

RESUMEN

Prostate cancer (PCa) development and progression relies on the programming of glucose and lipid metabolism, and this involves alterations in androgen receptor expression and signalling. Defining the molecular mechanism that underpins this metabolic programming will have direct significance for patients with PCa who have a poor prognosis. Here we show that there is a dynamic balance between sortilin and syndecan-1, that reports on different metabolic phenotypes. Using tissue microarrays, we demonstrated by immunohistochemistry that sortilin was highly expressed in low-grade cancer, while syndecan-1 was upregulated in high-grade disease. Mechanistic studies in prostate cell lines revealed that in androgen-sensitive LNCaP cells, sortilin enhanced glucose metabolism by regulating GLUT1 and GLUT4, while binding progranulin and lipoprotein lipase (LPL) to limit lipid metabolism. In contrast, in androgen-insensitive PC3 cells, syndecan-1 was upregulated, interacted with LPL and colocalised with ß3 integrin to promote lipid metabolism. In addition, androgen-deprived LNCaP cells had decreased expression of sortilin and reduced glucose-metabolism, but increased syndecan-1 expression, facilitating interactions with LPL and possibly ß3 integrin. We report a hitherto unappreciated molecular mechanism for PCa, which may have significance for disease progression and how androgen-deprivation therapy might promote castration-resistant PCa.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Próstata , Sindecano-1/genética , Antagonistas de Andrógenos , Andrógenos , Integrina beta3 , Procesos Neoplásicos
9.
Cancer Cell ; 41(7): 1309-1326.e10, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37295428

RESUMEN

The first step of oncogenesis is the acquisition of a repertoire of genetic mutations to initiate and sustain the malignancy. An important example of this initiation phase in acute leukemias is the formation of a potent oncogene by chromosomal translocations between the mixed lineage leukemia (MLL) gene and one of 100 translocation partners, known as the MLL recombinome. Here, we show that circular RNAs (circRNAs)-a family of covalently closed, alternatively spliced RNA molecules-are enriched within the MLL recombinome and can bind DNA, forming circRNA:DNA hybrids (circR loops) at their cognate loci. These circR loops promote transcriptional pausing, proteasome inhibition, chromatin re-organization, and DNA breakage. Importantly, overexpressing circRNAs in mouse leukemia xenograft models results in co-localization of genomic loci, de novo generation of clinically relevant chromosomal translocations mimicking the MLL recombinome, and hastening of disease onset. Our findings provide fundamental insight into the acquisition of chromosomal translocations by endogenous RNA carcinogens in leukemia.


Asunto(s)
Leucemia , Translocación Genética , Animales , Ratones , Humanos , ARN Circular/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia/genética , Leucemia/patología , ADN , Proteínas de Fusión Oncogénica/genética
10.
J Allergy Clin Immunol ; 152(3): 725-735.e10, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37127225

RESUMEN

BACKGROUND: Mast cells (MCs) are tissue-resident immune cells that mediate IgE-dependent allergic responses. Downstream of FcεRI, an intricate network of receptor-specific signaling pathways and adaptor proteins govern MC function. The 14-3-3 family of serine-threonine phosphorylation-dependent adapter proteins are known to organize intracellular signaling. However, the role of 14-3-3 in IgE-dependent activation remains poorly defined. OBJECTIVE: We sought to determine whether 14-3-3 proteins are required for IgE-dependent MC activation and whether 14-3-3 is a viable target for the treatment of MC-mediated inflammatory diseases. METHODS: Genetic manipulation of 14-3-3ζ expression in human and mouse MCs was performed and IgE-dependent mediator release assessed. Pharmacologic inhibitors of 14-3-3 and 14-3-3ζ knockout mice were used to assess 14-3-3ζ function in a MC-dependent in vivo passive cutaneous anaphylaxis (PCA) model of allergic inflammation. Expression and function of 14-3-3ζ were assessed in human nasal polyp tissue MCs. RESULTS: IgE-dependent mediator release from human MCs was decreased by 14-3-3ζ knockdown and increased by 14-3-3ζ overexpression. Deletion of the 14-3-3ζ gene decreased IgE-dependent activation of mouse MCs in vitro and PCA responses in vivo. Furthermore, the 14-3-3 inhibitor, RB-11, which impairs dimerization of 14-3-3, inhibited cultured MC and polyp tissue MC activation and signaling downstream of the FcεRI receptor and dose-dependently attenuated PCA responses. CONCLUSION: IgE/FcεRI-mediated MC activation is positively regulated by 14-3-3ζ. We identify a critical role for this p-Ser/Thr-binding protein in the regulation of MC FcεRI signaling and IgE-dependent immune responses and show that this pathway may be amenable to pharmacologic targeting.


Asunto(s)
Anafilaxia , Receptores de IgE , Humanos , Ratones , Animales , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Mastocitos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inmunoglobulina E , Inflamación/metabolismo , Degranulación de la Célula
11.
Exp Hematol Oncol ; 11(1): 94, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348393

RESUMEN

While numerous targeted therapies have been recently adopted to improve the treatment of hematologic malignancies, acquired or intrinsic resistance poses a significant obstacle to their efficacy. Thus, there is increasing need to identify novel, targetable pathways to further improve therapy for these diseases. The integrated stress response is a signaling pathway activated in cancer cells in response to both dysregulated growth and metabolism, and also following exposure to many therapies that appears one such targetable pathway for improved treatment of these diseases. In this review, we discuss the role of the integrated stress response in the biology of hematologic malignancies, its critical involvement in the mechanism of action of targeted therapies, and as a target for pharmacologic modulation as a novel strategy for the treatment of hematologic malignancies.

12.
J Immunother Cancer ; 10(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36167468

RESUMEN

BACKGROUND: Aggressive primary brain tumors such as glioblastoma are uniquely challenging to treat. The intracranial location poses barriers to therapy, and the potential for severe toxicity. Effective treatments for primary brain tumors are limited, and 5-year survival rates remain poor. Immune checkpoint inhibitor therapy has transformed treatment of some other cancers but has yet to significantly benefit patients with glioblastoma. Early phase trials of chimeric antigen receptor (CAR) T-cell therapy in patients with glioblastoma have demonstrated that this approach is safe and feasible, but with limited evidence of its effectiveness. The choices of appropriate target antigens for CAR-T-cell therapy also remain limited. METHODS: We profiled an extensive biobank of patients' biopsy tissues and patient-derived early passage glioma neural stem cell lines for GD2 expression using immunomicroscopy and flow cytometry. We then employed an approved clinical manufacturing process to make CAR- T cells from patients with peripheral blood of glioblastoma and diffuse midline glioma and characterized their phenotype and function in vitro. Finally, we tested intravenously administered CAR-T cells in an aggressive intracranial xenograft model of glioblastoma and used multicolor flow cytometry, multicolor whole-tissue immunofluorescence and next-generation RNA sequencing to uncover markers associated with effective tumor control. RESULTS: Here we show that the tumor-associated antigen GD2 is highly and consistently expressed in primary glioblastoma tissue removed at surgery. Moreover, despite patients with glioblastoma having perturbations in their immune system, highly functional GD2-specific CAR-T cells can be produced from their peripheral T cells using an approved clinical manufacturing process. Finally, after intravenous administration, GD2-CAR-T cells effectively infiltrated the brain and controlled tumor growth in an aggressive orthotopic xenograft model of glioblastoma. Tumor control was further improved using CAR-T cells manufactured with a clinical retroviral vector encoding an interleukin-15 transgene alongside the GD2-specific CAR. These CAR-T cells achieved a striking 50% complete response rate by bioluminescence imaging in established intracranial tumors. CONCLUSIONS: Targeting GD2 using a clinically deployed CAR-T-cell therapy has a sound scientific and clinical rationale as a treatment for glioblastoma and other aggressive primary brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Receptores Quiméricos de Antígenos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Gangliósidos/metabolismo , Glioblastoma/genética , Glioblastoma/terapia , Glioma/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico , Interleucina-15/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
14.
EMBO Rep ; 23(8): e54464, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35679135

RESUMEN

Immigration of mesenchymal cells into the growing fin and limb buds drives distal outgrowth, with subsequent tensile forces between these cells essential for fin and limb morphogenesis. Morphogens derived from the apical domain of the fin, orientate limb mesenchyme cell polarity, migration, division and adhesion. The zebrafish mutant stomp displays defects in fin morphogenesis including blister formation and associated loss of orientation and adhesion of immigrating fin mesenchyme cells. Positional cloning of stomp identifies a mutation in the gene encoding the axon guidance ligand, Slit3. We provide evidence that Slit ligands derived from immigrating mesenchyme act via Robo receptors at the apical ectodermal ridge (AER) to promote release of sphingosine-1-phosphate (S1P). S1P subsequently diffuses back to the mesenchyme to promote their polarisation, orientation, positioning and adhesion to the interstitial matrix of the fin fold. We thus demonstrate the coordination of the Slit-Robo and S1P signalling pathways in fin fold morphogenesis. Our work introduces a mechanism regulating the orientation, positioning and adhesion of its constituent cells.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Pez Cebra , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Lisofosfolípidos , Mesodermo/metabolismo , Esfingosina/análogos & derivados , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Nat Commun ; 13(1): 2614, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551192

RESUMEN

The interaction of germline variation and somatic cancer driver mutations is under-investigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondrially-encoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy.


Asunto(s)
Isocitrato Deshidrogenasa , Leucemia Mieloide Aguda , Adulto , Mutación de Línea Germinal , Humanos , Isocitrato Deshidrogenasa/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación
16.
Front Immunol ; 13: 850226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464424

RESUMEN

Glioblastoma is the most common and aggressive form of primary brain cancer, with no improvements in the 5-year survival rate of 4.6% over the past three decades. T-cell-based immunotherapies such as immune-checkpoint inhibitors and chimeric antigen receptor T-cell therapy have prolonged the survival of patients with other cancers and have undergone early-phase clinical evaluation in glioblastoma patients. However, a major challenge for T-cell-based immunotherapy of glioblastoma and other solid cancers is T-cell infiltration into tumours. This process is mediated by chemokine-chemokine receptor and integrin-adhesion molecule interactions, yet the specific nature of the molecules that may facilitate T-cell homing into glioblastoma are unknown. Here, we have characterised chemokine receptor and integrin expression profiles of endogenous glioblastoma-infiltrating T cells, and the chemokine expression profile of glioblastoma-associated cells, by single-cell RNA-sequencing. Subsequently, chemokine receptors and integrins were validated at the protein level to reveal enrichment of receptors CCR2, CCR5, CXCR3, CXCR4, CXCR6, CD49a, and CD49d in glioblastoma-infiltrating T-cell populations relative to T cells in matched patient peripheral blood. Complementary chemokine ligand expression was then validated in glioblastoma biopsies and glioblastoma-derived primary cell cultures. Together, enriched expression of homing receptor-ligand pairs identified in this study implicate a potential role in mediating T-cell infiltration into glioblastoma. Importantly, our data characterising the migratory receptors on endogenous tumour-infiltrating T cells could be exploited to enhance the tumour-homing properties of future T-cell immunotherapies for glioblastoma.


Asunto(s)
Glioblastoma , Quimiocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Integrinas/metabolismo , Ligandos , Subgrupos de Linfocitos T
17.
Blood ; 139(26): 3737-3751, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35443029

RESUMEN

Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapéutico , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Línea Celular Tumoral , Ceramidas/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
18.
EMBO Rep ; 23(4): e52904, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35156745

RESUMEN

Calreticulin (CALR) is recurrently mutated in myelofibrosis via a frameshift that removes an endoplasmic reticulum retention signal, creating a neoepitope potentially targetable by immunotherapeutic approaches. We developed a specific rat monoclonal IgG2α antibody, 4D7, directed against the common sequence encoded by both insertion and deletion mutations. 4D7 selectively bound to cells co-expressing mutant CALR and thrombopoietin receptor (TpoR) and blocked JAK-STAT signalling, TPO-independent proliferation and megakaryocyte differentiation of mutant CALR myelofibrosis progenitors by disrupting the binding of CALR dimers to TpoR. Importantly, 4D7 inhibited proliferation of patient samples with both insertion and deletion CALR mutations but not JAK2 V617F and prolonged survival in xenografted bone marrow models of mutant CALR-dependent myeloproliferation. Together, our data demonstrate a novel therapeutic approach to target a problematic disease driven by a recurrent somatic mutation that would normally be considered undruggable.


Asunto(s)
Calreticulina , Trastornos Mieloproliferativos , Animales , Anticuerpos Monoclonales , Calreticulina/genética , Calreticulina/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Ratas
19.
Cancers (Basel) ; 14(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35158767

RESUMEN

The Sphingosine kinase-1/Sphingosine 1-Phosphate (SphK1/S1P) signaling pathway is overexpressed in various cancers, and is instrumental for the adaptation to hypoxia in a number of solid tumor models, but no data are available in osteosarcoma. Here we report that SphK1 and the S1P1 receptor are involved in HIF-1α accumulation in hypoxic osteosarcoma cells. FTY720 (Fingolimod), which targets SphK1 and S1P1, prevented HIF-1α accumulation, and also inhibited cell proliferation in both normoxia and hypoxia unlike conventional chemotherapy. In human biopsies, a significant increase of SphK1 activity was observed in cancer compared with normal bones. In all sets of TMA samples (130 cases of osteosarcoma), immunohistochemical analysis showed the hypoxic marker GLUT-1, SphK1 and S1P1 were expressed in tumors. SphK1 correlated with the GLUT-1 suggesting that SphK1 is overexpressed and correlates with intratumoral hypoxia. No correlation was found between GLUT-1 or SphK1 and response to chemotherapy, but a statistical difference was found with increased S1P1 expression in patients with poor response in long bone osteosarcomas. Importantly, multivariate analyses showed that GLUT-1 was associated with an increased risk of death in flat bone, whereas SphK1 and S1P1 were associated with an increased risk of death in long bones.

20.
Sci Rep ; 12(1): 454, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013382

RESUMEN

Sphingosine 1-phosphate (S1P) is a signaling lipid that has broad roles, working either intracellularly through various protein targets, or extracellularly via a family of five G-protein coupled receptors. Agents that selectively and specifically target each of the S1P receptors have been sought as both biological tools and potential therapeutics. JTE-013, a small molecule antagonist of S1P receptors 2 and 4 (S1P2 and S1P4) has been widely used in defining the roles of these receptors in various biological processes. Indeed, our previous studies showed that JTE-013 had anti-acute myeloid leukaemia (AML) activity, supporting a role for S1P2 in the biology and therapeutic targeting of AML. Here we examined this further and describe lipidomic analysis of AML cells that revealed JTE-013 caused alterations in sphingolipid metabolism, increasing cellular ceramides, dihydroceramides, sphingosine and dihydrosphingosine. Further examination of the mechanisms behind these observations showed that JTE-013, at concentrations frequently used in the literature to target S1P2/4, inhibits several sphingolipid metabolic enzymes, including dihydroceramide desaturase 1 and both sphingosine kinases. Collectively, these findings demonstrate that JTE-013 can have broad off-target effects on sphingolipid metabolism and highlight that caution must be employed in interpreting the use of this reagent in defining the roles of S1P2/4.


Asunto(s)
Pirazoles/química , Piridinas/química , Esfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/metabolismo , Células HEK293 , Humanos , Cinética , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Receptores de Esfingosina-1-Fosfato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...