Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(7): 1154-1165, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36596698

RESUMEN

During development, cortical neurons are produced in a temporally regulated sequence from apical progenitors, directly or indirectly, through the production of intermediate basal progenitors. The balance between these major progenitor types is critical for the production of the proper number and types of neurons, and it is thus important to decipher the cellular and molecular cues controlling this equilibrium. Here we address the role of a cell cycle regulator, the CDC25B phosphatase, in this process. We show that, in the developing mouse neocortex of both sex, deleting CDC25B in apical progenitors leads to a transient increase in the production of TBR1+ neurons at the expense of TBR2+ basal progenitors. This phenotype is associated with lengthening of the G2 phase of the cell cycle, the total cell cycle length being unaffected. Using in utero electroporation and cortical slice cultures, we demonstrate that the defect in TBR2+ basal progenitor production requires interaction with CDK1 and is because of the G2 phase lengthening in CDC25B mutants. Together, this study identifies a new role for CDC25B and G2 phase length in direct versus indirect neurogenesis at early stages of cortical development.SIGNIFICANCE STATEMENT This study is the first analysis of the function of CDC25B, a G2/M regulator, in the developing neocortex. We show that removing CDC25B function leads to a transient increase in neuronal differentiation at early stages, occurring simultaneously with a decrease in basal intermediate progenitors (bIPs). Conversely, a CDC25B gain of function promotes production of bIPs, and this is directly related to CDC25B's ability to regulate CDK1 activity. This imbalance of neuron/progenitor production is linked to a G2 phase lengthening in apical progenitors; and using pharmacological treatments on cortical slice cultures, we show that shortening the G2 phase is sufficient to enhance bIP production. Our results reveal the importance of G2 phase length regulation for neural progenitor fate determination.


Asunto(s)
Neocórtex , Células-Madre Neurales , Neurogénesis , Animales , Ratones , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo
2.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588250

RESUMEN

Although lengthening of the cell cycle and G1 phase is a generic feature of tissue maturation during development, the underlying mechanism remains poorly understood. Here, we develop a time-lapse imaging strategy to measure the four cell cycle phases in single chick neural progenitor cells in their endogenous environment. We show that neural progenitors are widely heterogeneous with respect to cell cycle length. This variability in duration is distributed over all phases of the cell cycle, with the G1 phase contributing the most. Within one cell cycle, each phase duration appears stochastic and independent except for a correlation between S and M phase duration. Lineage analysis indicates that the majority of daughter cells may have a longer G1 phase than mother cells, suggesting that, at each cell cycle, a mechanism lengthens the G1 phase. We identify that the CDC25B phosphatase known to regulate the G2/M transition indirectly increases the duration of the G1 phase, partly through delaying passage through the restriction point. We propose that CDC25B increases the heterogeneity of G1 phase length, revealing a previously undescribed mechanism of G1 lengthening that is associated with tissue development.


Asunto(s)
Células-Madre Neurales , Ciclo Celular/fisiología , División Celular , Fase G1/fisiología , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
4.
Neural Dev ; 14(1): 7, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30867016

RESUMEN

In the developing neural tube in chicken and mammals, neural stem cells proliferate and differentiate according to a stereotyped spatiotemporal pattern. Several actors have been identified in the control of this process, from tissue-scale morphogens patterning to intrinsic determinants in neural progenitor cells. In a previous study (Bonnet et al. eLife 7, 2018), we have shown that the CDC25B phosphatase promotes the transition from proliferation to differentiation by stimulating neurogenic divisions, suggesting that it acts as a maturating factor for neural progenitors. In this previous study, we set up a mathematical model linking fixed progenitor modes of division to the dynamics of progenitors and differentiated populations. Here, we extend this model over time to propose a complete dynamical picture of this process. We start from the standard paradigm that progenitors are homogeneous and can perform any type of divisions (proliferative division yielding two progenitors, asymmetric neurogenic divisions yielding one progenitor and one neuron, and terminal symmetric divisions yielding two neurons). We calibrate this model using data published by Saade et al. (Cell Reports 4, 2013) about mode of divisions and population dynamics of progenitors/neurons at different developmental stages. Next, we explore the scenarios in which the progenitor population is actually split into two different pools, one of which is composed of cells that have lost the capacity to perform proliferative divisions. The scenario in which asymmetric neurogenic division would induce such a loss of proliferative capacity appears very relevant.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Modelos Biológicos , Células-Madre Neurales/fisiología , Tubo Neural/citología , Tubo Neural/crecimiento & desarrollo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Fosfatasas cdc25/fisiología , Animales
5.
Elife ; 72018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29969095

RESUMEN

A fundamental issue in developmental biology and in organ homeostasis is understanding the molecular mechanisms governing the balance between stem cell maintenance and differentiation into a specific lineage. Accumulating data suggest that cell cycle dynamics play a major role in the regulation of this balance. Here we show that the G2/M cell cycle regulator CDC25B phosphatase is required in mammals to finely tune neuronal production in the neural tube. We show that in chick neural progenitors, CDC25B activity favors fast nuclei departure from the apical surface in early G1, stimulates neurogenic divisions and promotes neuronal differentiation. We design a mathematical model showing that within a limited period of time, cell cycle length modifications cannot account for changes in the ratio of the mode of division. Using a CDC25B point mutation that cannot interact with CDK, we show that part of CDC25B activity is independent of its action on the cell cycle.


Asunto(s)
Ciclo Celular/genética , Modelos Estadísticos , Células-Madre Neurales/enzimología , Tubo Neural/enzimología , Neurogénesis/genética , Fosfatasas cdc25/genética , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Diferenciación Celular , Embrión de Pollo , Pollos , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Tubo Neural/citología , Tubo Neural/crecimiento & desarrollo , Neuronas/citología , Neuronas/enzimología , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Mutación Puntual , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Médula Espinal/citología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Imagen de Lapso de Tiempo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Fosfatasas cdc25/metabolismo
6.
Neural Dev ; 13(1): 3, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29519242

RESUMEN

BACKGROUND: Most oligodendrocytes of the spinal cord originate from ventral progenitor cells of the pMN domain, characterized by expression of the transcription factor Olig2. A minority of oligodendrocytes is also recognized to emerge from dorsal progenitors during fetal development. The prevailing view is that generation of ventral oligodendrocytes depends on Sonic hedgehog (Shh) while dorsal oligodendrocytes develop under the influence of Fibroblast Growth Factors (FGFs). RESULTS: Using the well-established model of the chicken embryo, we show that ventral spinal progenitor cells activate FGF signaling at the onset of oligodendrocyte precursor cell (OPC) generation. Inhibition of FGF receptors at that time appears sufficient to prevent generation of ventral OPCs, highlighting that, in addition to Shh, FGF signaling is required also for generation of ventral OPCs. We further reveal an unsuspected interplay between Shh and FGF signaling by showing that FGFs serve dual essential functions in ventral OPC specification. FGFs are responsible for timely induction of a secondary Shh signaling center, the lateral floor plate, a crucial step to create the burst of Shh required for OPC specification. At the same time, FGFs prevent down-regulation of Olig2 in pMN progenitor cells as these cells receive higher threshold of the Shh signal. Finally, we bring arguments favoring a key role of newly differentiated neurons acting as providers of the FGF signal required to trigger OPC generation in the ventral spinal cord. CONCLUSION: Altogether our data reveal that the FGF signaling pathway is activated and required for OPC commitment in the ventral spinal cord. More generally, our data may prove important in defining strategies to produce large populations of determined oligodendrocyte precursor cells from undetermined neural progenitors, including stem cells. In the long run, these new data could be useful in attempts to stimulate the oligodendrocyte fate in residing neural stem cells.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/fisiología , Médula Espinal/citología , Animales , Embrión de Pollo , Electroporación , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Hedgehog/genética , Técnicas In Vitro , Proteínas del Tejido Nervioso , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Técnicas de Cultivo de Órganos , Médula Espinal/embriología , Células Madre/fisiología
7.
Dev Biol ; 436(2): 94-107, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29486153

RESUMEN

Proper embryonic development relies on a tight control of spatial and temporal gene expression profiles in a highly regulated manner. One good example is the ON/OFF switching of the transcription factor PAX6 that governs important steps of neurogenesis. In the neural tube PAX6 expression is initiated in neural progenitors through the positive action of retinoic acid signaling and downregulated in neuronal precursors by the bHLH transcription factor NEUROG2. How these two regulatory inputs are integrated at the molecular level to properly fine tune temporal PAX6 expression is not known. In this study we identified and characterized a 940-bp long distal cis-regulatory module (CRM), located far away from the PAX6 transcription unit and which conveys positive input from RA signaling pathway and indirect repressive signal(s) from NEUROG2. These opposing regulatory signals are integrated through HOMZ, a 94 bp core region within E940 which is evolutionarily conserved in distant organisms such as the zebrafish. We show that within HOMZ, NEUROG2 and RA exert their opposite temporal activities through a short 60 bp region containing a functional RA-responsive element (RARE). We propose a model in which retinoic acid receptors (RARs) and NEUROG2 repressive target(s) compete on the same DNA motif to fine tune temporal PAX6 expression during the course of spinal neurogenesis.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Tubo Neural/metabolismo , Neurogénesis/genética , Factor de Transcripción PAX6/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/embriología , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/fisiología , Pez Cebra
8.
Dev Biol ; 432(1): 14-23, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28034699

RESUMEN

A fundamental issue in nervous system development and homeostasis is to understand the mechanisms governing the balance between the maintenance of proliferating progenitors versus their differentiation into post-mitotic neurons. Accumulating data suggest that the cell cycle and core regulators of the cell cycle machinery play a major role in regulating this fine balance. Here, we focus on the interplay between the cell cycle and cellular and molecular events governing spinal cord development. We describe the existing links between the cell cycle and interkinetic nuclear migration (INM). We show how the different morphogens patterning the neural tube also regulate the cell cycle machinery to coordinate proliferation and patterning. We give examples of how cell cycle core regulators regulate transcriptionally, or post-transcriptionally, genes involved in controlling the maintenance versus the differentiation of neural progenitors. Finally, we describe the changes in cell cycle kinetics occurring during neural tube patterning and at the time of neuronal differentiation, and we discuss future research directions to better understand the role of the cell cycle in cell fate decisions.


Asunto(s)
Médula Espinal/citología , Médula Espinal/embriología , Animales , Tipificación del Cuerpo , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Proliferación Celular/fisiología , Humanos , Morfogénesis , Tubo Neural/citología , Tubo Neural/metabolismo , Neuronas/citología , Neuronas/metabolismo , Transducción de Señal , Células Madre/citología
9.
PLoS One ; 10(5): e0128130, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26020522

RESUMEN

Mitochondria, long known as the cell powerhouses, also regulate redox signaling and arbitrate cell survival. The organelles are now appreciated to exert additional critical roles in cell state transition from a pluripotent to a differentiated state through balancing glycolytic and respiratory metabolism. These metabolic adaptations were recently shown to be concomitant with mitochondrial morphology changes and are thus possibly regulated by contingencies of mitochondrial dynamics. In this context, we examined, for the first time, mitochondrial network plasticity during the transition from proliferating neural progenitors to post-mitotic differentiating neurons. We found that mitochondria underwent morphological reshaping in the developing neural tube of chick and mouse embryos. In the proliferating population, mitochondria in the mitotic cells lying at the apical side were very small and round, while they appeared thick and short in interphase cells. In differentiating neurons, mitochondria were reorganized into a thin, dense network. This reshaping of the mitochondrial network was not specific of a subtype of progenitors or neurons, suggesting that this is a general event accompanying neurogenesis in the spinal cord. Our data shed new light on the various changes occurring in the mitochondrial network during neurogenesis and suggest that mitochondrial dynamics could play a role in the neurogenic process.


Asunto(s)
Diferenciación Celular/fisiología , Mitocondrias/metabolismo , Red Nerviosa/embriología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Médula Espinal/embriología , Animales , Embrión de Pollo , Células HeLa , Humanos , Ratones , Red Nerviosa/citología , Células-Madre Neurales/citología , Neuronas/citología , Médula Espinal/citología
10.
Cell Tissue Res ; 359(1): 201-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25260908

RESUMEN

Deciphering the core machinery of the cell cycle and cell division has been primarily the focus of cell biologists, while developmental biologists have identified the signaling pathways and transcriptional programs controlling cell fate choices. As a result, until recently, the interplay between these two fundamental aspects of biology have remained largely unexplored. Increasing data show that the cell cycle and regulators of the core cell cycle machinery are important players in cell fate decisions during neurogenesis. Here, we summarize recent data describing how cell cycle dynamics affect the switch between proliferation and differentiation, with an emphasis on the roles played by the cell cycle regulators, the CDC25 phosphatases.


Asunto(s)
Ciclo Celular , Linaje de la Célula , Sistema Nervioso/citología , Sistema Nervioso/enzimología , Fosfatasas cdc25/metabolismo , Animales , Diferenciación Celular , Humanos , Neurogénesis
11.
Mol Cell Biol ; 32(13): 2596-607, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22547683

RESUMEN

Proneural NEUROG2 (neurogenin 2 [Ngn2]) is essential for neuronal commitment, cell cycle withdrawal, and neuronal differentiation. Although NEUROG2's influence on neuronal commitment and differentiation is beginning to be clarified, its role in cell cycle withdrawal remains unknown. We therefore set out to investigate the molecular mechanisms by which NEUROG2 induces cell cycle arrest during spinal neurogenesis. We developed a large-scale chicken embryo strategy, designed to find gene networks modified at the onset of NEUROG2 expression, and thereby we identified those involved in controlling the cell cycle. NEUROG2 activation leads to a rapid decrease of a subset of cell cycle regulators acting at G(1) and S phases, including CCND1, CCNE1/2, and CCNA2 but not CCND2. The use of NEUROG2VP16 and NEUROG2EnR, acting as the constitutive activator and repressor, respectively, indicates that NEUROG2 indirectly represses CCND1 and CCNE2 but opens the possibility that CCNE2 is also repressed by a direct mechanism. We demonstrated by phenotypic analysis that this rapid repression of cyclins prevents S phase entry of neuronal precursors, thus favoring cell cycle exit. We also showed that cell cycle exit can be uncoupled from neuronal differentiation and that during normal development NEUROG2 is in charge of tightly coordinating these two processes.


Asunto(s)
Proteínas Aviares/metabolismo , Puntos de Control del Ciclo Celular/fisiología , Ciclinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Proteínas Aviares/antagonistas & inhibidores , Proteínas Aviares/genética , Secuencia de Bases , Puntos de Control del Ciclo Celular/genética , Proliferación Celular , Embrión de Pollo , Ciclina A2/genética , Ciclina A2/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Ciclinas/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fase G1 , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neurogénesis/fisiología , ARN Interferente Pequeño/genética , Fase S
12.
Development ; 139(6): 1095-104, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22318230

RESUMEN

During embryonic development, changes in cell cycle kinetics have been associated with neurogenesis. This observation suggests that specific cell cycle regulators may be recruited to modify cell cycle dynamics and influence the decision between proliferation and differentiation. In the present study, we investigate the role of core positive cell cycle regulators, the CDC25 phosphatases, in this process. We report that, in the developing chicken spinal cord, only CDC25A is expressed in domains where neural progenitors undergo proliferative self-renewing divisions, whereas the combinatorial expression of CDC25A and CDC25B correlates remarkably well with areas where neurogenesis occurs. We also establish that neural progenitors expressing both CDC25A and CDC25B have a shorter G2 phase than those expressing CDC25A alone. We examine the functional relevance of these correlations using an RNAi-based method that allows us to knock down CDC25B efficiently and specifically. Reducing CDC25B expression results in a specific lengthening of the G2 phase, whereas the S-phase length and the total cell cycle time are not significantly modified. This modification of cell cycle kinetics is associated with a reduction in neuron production that is due to the altered conversion of proliferating neural progenitor cells to post-mitotic neurons. Thus, expression of CDC25B in neural progenitors has two functions: to change cell cycle kinetics and in particular G2-phase length and also to promote neuron production, identifying new roles for this phosphatase during neurogenesis.


Asunto(s)
Fase G2 , Sistema Nervioso/embriología , Células-Madre Neurales/citología , Neurogénesis , Médula Espinal/embriología , Fosfatasas cdc25/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Embrión de Pollo , Células-Madre Neurales/fisiología , Neuronas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Médula Espinal/citología , Fosfatasas cdc25/biosíntesis
13.
PLoS One ; 6(10): e26932, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22046416

RESUMEN

Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans.


Asunto(s)
Empalme Alternativo/genética , Epilepsia/genética , Dosificación de Gen , Proteínas del Tejido Nervioso/genética , Animales , Pollos , Modelos Animales de Enfermedad , Epilepsia/etiología , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Mutación , Filogenia , Convulsiones/genética
14.
Neural Dev ; 3: 4, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18271960

RESUMEN

BACKGROUND: During the development of the nervous system, neural progenitor cells can either stay in the pool of proliferating undifferentiated cells or exit the cell cycle and differentiate. Two main factors will determine the fate of a neural progenitor cell: its position within the neuroepithelium and the time at which the cell initiates differentiation. In this paper we investigated the importance of the timing of cell cycle exit on cell-fate decision by forcing neural progenitors to cycle and studying the consequences on specification and differentiation programs. RESULTS: As a model, we chose the spinal progenitors of motor neurons (pMNs), which switch cell-fate from motor neurons to oligodendrocytes with time. To keep pMNs in the cell cycle, we forced the expression of G1-phase regulators, the D-type cyclins. We observed that keeping neural progenitor cells cycling is not sufficient to retain them in the progenitor domain (ventricular zone); transgenic cells instead migrate to the differentiating field (mantle zone) regardless of cell cycle exit. Cycling cells located in the mantle zone do not retain markers of neural progenitor cells such as Sox2 or Olig2 but upregulate transcription factors involved in motor neuron specification, including MNR2 and Islet1/2. These cycling cells also progress through neuronal differentiation to axonal extension. We also observed mitotic cells displaying all the features of differentiating motor neurons, including axonal projection via the ventral root. However, the rapid decrease observed in the proliferation rate of the transgenic motor neuron population suggests that they undergo only a limited number of divisions. Finally, quantification of the incidence of the phenotype in young and more mature neuroepithelium has allowed us to propose that once the transcriptional program assigning neural progenitor cells to a subtype of neurons is set up, transgenic cells progress in their program of differentiation regardless of cell cycle exit. CONCLUSION: Our findings indicate that maintaining neural progenitor cells in proliferation is insufficient to prevent differentiation or alter cell-fate choice. Furthermore, our results indicate that the programs of neuronal specification and differentiation are controlled independently of cell cycle exit.


Asunto(s)
Neuronas Motoras/citología , Oligodendroglía/citología , Médula Espinal/citología , Médula Espinal/embriología , Células Madre/citología , Animales , Axones/fisiología , Biomarcadores , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/embriología , Embrión de Pollo , Pollos , Ciclina D1/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Células Neuroepiteliales/citología , Células Neuroepiteliales/fisiología , Oligodendroglía/fisiología , Células Madre/fisiología , Transfección
15.
Dev Biol ; 305(2): 659-73, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17399698

RESUMEN

During neurogenesis, complex networks of genes act sequentially to control neuronal differentiation. In the neural tube, the expression of Pax6, a paired-box-containing gene, just precedes the appearance of the first post-mitotic neurons. So far, its only reported function in the spinal cord is in specifying subsets of neurons. Here we address its possible function in controlling the balance between proliferation and commitment of neural progenitors. We report that increasing Pax6 level is sufficient to push neural progenitors toward cell cycle exit and neuronal commitment via Neurogenin 2 (Ngn2) upregulation. However, neuronal precursors maintaining Pax6(On) fail to perform neuronal differentiation. Conversely, turning off Pax6 function in these precursors is sufficient to provoke premature differentiation and the number of differentiated neurons depends of the amount of Pax6 protein. Moreover, we found that Pax6 expression involves negative feedback regulation by Ngn2 and this repression is critical for the proneural activity of Ngn2. We present a model in which the level of Pax6 activity first conditions the moment when a given progenitor will leave the cell cycle and second, the moment when a selected neuronal precursor will irreversibly differentiate.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas del Ojo/fisiología , Proteínas de Homeodominio/fisiología , Neuronas/citología , Factores de Transcripción Paired Box/fisiología , Proteínas Represoras/fisiología , Médula Espinal/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Embrión de Pollo , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/biosíntesis , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/antagonistas & inhibidores , Factores de Transcripción Paired Box/biosíntesis , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/biosíntesis , Médula Espinal/citología , Médula Espinal/fisiología , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo
16.
Dev Dyn ; 236(1): 306-13, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17103399

RESUMEN

The inner ear is a complex sensory organ with hearing and balance functions. Gata3 and Gata2 are expressed in the inner ear, and to gain more insight into their roles in otic development, we made a detailed expression analysis in chicken embryos. At early stages, their expression was highly overlapping. At later stages, Gata2 expression became prominent in vestibular and cochlear nonsensory epithelia. In contrast to Gata2, Gata3 was mainly expressed in the developing sensory epithelia, reflecting the importance of this factor in the sensory-neural development of the inner ear. While the later expression patterns of both Gata3 and Gata2 were highly conserved between chicken and mouse, important differences were observed especially with Gata3 during early otic development, providing indications of divergent molecular control during placode invagination in mice and chickens. We also found indications that the regulatory hierarchy observed in mouse, where Gata3 is upstream of Gata2 and Fgf10, could be conserved in chicken.


Asunto(s)
Proteínas Aviares/metabolismo , Oído Interno/embriología , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA3/metabolismo , Animales , Proteínas Aviares/genética , Embrión de Pollo , Conducto Coclear/embriología , Conducto Coclear/metabolismo , Oído Interno/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA3/genética , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Organogénesis/genética , Vestíbulo del Laberinto/embriología , Vestíbulo del Laberinto/metabolismo
17.
Dev Biol ; 294(1): 133-47, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16564519

RESUMEN

Sonic hedgehog (Shh) signaling controls numerous aspects of vertebrate development, including proliferation of precursors in different organs. Identification of molecules that link the Shh pathway to cell cycle machinery is therefore of major importance for an understanding of the mechanisms underlying Shh-dependent proliferation. Here, we show that an actor in the control of entry into mitosis, the phosphatase CDC25B, is transcriptionally upregulated by the Shh/Gli pathway. Unlike other G2/M regulators, CDC25B is highly expressed in domains of Shh activity, including the ventral neural tube and the posterior limb bud. Loss- and gain-of-function experiments reveal that Shh contributes to CDC25B transcriptional activation in the neural tube both of chick and mouse embryos. Moreover, CDC25B transcripts are absent from the posterior limb bud of Shh-/- mice, while anterior grafts of Shh-expressing cells in the chicken limb bud induce ectopic CDC25B expression. Arresting the cell cycle does not reduce the level of CDC25B expression in the neural tube strongly suggesting that the upregulation of CDC25B is not an indirect consequence of the Shh-dependent proliferation. These data reveal an unexpected developmental link between the Shh pathway and a participant in G2/M control.


Asunto(s)
Proteínas de Ciclo Celular/genética , División Celular/fisiología , Fase G2/fisiología , Transactivadores/metabolismo , Fosfatasas cdc25/genética , Animales , Proliferación Celular , Sistema Nervioso Central/embriología , Embrión de Pollo , Embrión de Mamíferos , Proteínas Hedgehog , Esbozos de los Miembros , Ratones , Ratones Noqueados , Transactivadores/fisiología , Transcripción Genética , Regulación hacia Arriba
18.
Dev Biol ; 273(2): 195-209, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15328007

RESUMEN

In the vertebrate embryo, spinal cord elongation requires FGF signaling that promotes the continuous development of the posterior nervous system by maintaining a stem zone of proliferating neural progenitors. Those escaping the caudal neural stem zone, which is expressed to Shh signal, initiate ventral patterning in the neural groove before starting neuronal differentiation in the neural tube. Here we investigated the integration of D-type cyclins, known to govern cell cycle progression under the control of extracellular signals, in the program of spinal cord maturation. In chicken embryo, we find that cyclin D2 is preferentially expressed in the posterior neural plate, whereas cyclin D1 appears in the neural groove. We demonstrated by loss- and gain-of-function experiments that FGF signaling maintains cyclin D2 in the immature caudal neural epithelium, while Shh activates cyclin D1 in the neural groove. Moreover, forced maintenance of cyclin D1 or D2 in the neural tube favors proliferation at the expense of neuronal differentiation. These results contribute to our understanding of how the cell cycle control can be linked to the patterning programs to influence the balance between proliferation and neuronal differentiation in discrete progenitors domains.


Asunto(s)
Ciclina D1/metabolismo , Ciclinas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Médula Espinal/embriología , Médula Espinal/metabolismo , Transactivadores/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Tipificación del Cuerpo , Ciclo Celular , Diferenciación Celular , Embrión de Pollo , Ciclina D1/genética , Ciclinas/genética , Cartilla de ADN/genética , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Hibridación in Situ , Modelos Neurológicos , Transducción de Señal , Médula Espinal/citología , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...