Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 251: 112842, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232641

RESUMEN

Sonodynamic therapy (SDT) exploits the energy generated by ultrasound (US) to activate sound-sensitive drugs (sonosensitizers), leading to the generation of reactive oxygen species (ROS) and cancer cell death. Two-dimensional (2D) and three-dimensional (3D) cultures of human pancreatic cancer BxPC-3 cells were chosen as the models with which to investigate the therapeutic effects of the US-activated sonosensitizer IR-780 as pancreatic cancer is still one of the most lethal types of cancer. The effects of SDT, including ROS production, cancer cell death and immunogenic cell death (ICD), were extensively investigated. When subjected to US, IR-780 triggered significant ROS production and caused cancer cell death after 24 h (p ≤ 0.01). Additionally, the activation of dendritic cells (DCs) led to an effective immune response against the cancer cells undergoing SDT-induced death. BxPC-3 spheroids were developed and studied extensively to validate the findings observed in 2D BxPC-3 cell cultures. An analysis of the pancreatic cancer spheroid section revealed significant SDT-induced cancer cell death after 48 h after the treatment (p ≤ 0.01), with this being accompanied by the presence of SDT-induced damage-associated molecular patterns (DAMPs), such as calreticulin (CRT) and high mobility group box 1 (HMGB1). In conclusion, the data obtained demonstrates the anticancer efficacy of SDT and its immunomodulatory potential via action as an ICD-inducer.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Terapia por Ultrasonido , Humanos , Apoptosis , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pancreáticas/terapia , Terapia por Ultrasonido/métodos
2.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37857485

RESUMEN

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Asunto(s)
Corteza Auditiva , Proteínas Proto-Oncogénicas c-akt , Masculino , Ratones , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Corteza Auditiva/metabolismo , Espinas Dendríticas/metabolismo , Tensinas/metabolismo , Memoria a Largo Plazo/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Memoria a Corto Plazo/fisiología , Sirolimus/farmacología , Miedo/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Mamíferos
3.
Neuropsychopharmacology ; 48(6): 877-886, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35945276

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.


Asunto(s)
Síndromes Epilépticos , Espasmos Infantiles , Ratones , Animales , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Síndromes Epilépticos/tratamiento farmacológico , Síndromes Epilépticos/genética , Síndromes Epilépticos/metabolismo , Neuronas/metabolismo , Modelos Animales de Enfermedad , Corteza Cerebral/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/uso terapéutico
4.
BMC Biol ; 19(1): 256, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34911542

RESUMEN

BACKGROUND: Rett syndrome (RTT) is a monogenic X-linked neurodevelopmental disorder characterized by loss-of-function mutations in the MECP2 gene, which lead to structural and functional changes in synapse communication, and impairments of neural activity at the basis of cognitive deficits that progress from an early age. While the restoration of MECP2 in animal models has been shown to rescue some RTT symptoms, gene therapy intervention presents potential side effects, and with gene- and RNA-editing approaches still far from clinical application, strategies focusing on signaling pathways downstream of MeCP2 may provide alternatives for the development of more effective therapies in vivo. Here, we investigate the role of the c-Jun N-terminal kinase (JNK) stress pathway in the pathogenesis of RTT using different animal and cell models and evaluate JNK inhibition as a potential therapeutic approach. RESULTS: We discovered that the c-Jun N-terminal kinase (JNK) stress pathway is activated in Mecp2-knockout, Mecp2-heterozygous mice, and in human MECP2-mutated iPSC neurons. The specific JNK inhibitor, D-JNKI1, promotes recovery of body weight and locomotor impairments in two mouse models of RTT and rescues their dendritic spine alterations. Mecp2-knockout presents intermittent crises of apnea/hypopnea, one of the most invalidating RTT pathological symptoms, and D-JNKI1 powerfully reduces this breathing dysfunction. Importantly, we discovered that also neurons derived from hiPSC-MECP2 mut show JNK activation, high-phosphorylated c-Jun levels, and cell death, which is not observed in the isogenic control wt allele hiPSCs. Treatment with D-JNKI1 inhibits neuronal death induced by MECP2 mutation in hiPSCs mut neurons. CONCLUSIONS: As a summary, we found altered JNK signaling in models of RTT and suggest that D-JNKI1 treatment prevents clinical symptoms, with coherent results at the cellular, molecular, and functional levels. This is the first proof of concept that JNK plays a key role in RTT and its specific inhibition offers a new and potential therapeutic tool to tackle RTT.


Asunto(s)
Síndrome de Rett , Animales , Modelos Animales de Enfermedad , Sistema de Señalización de MAP Quinasas , Ratones , Neuronas/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/terapia , Sinapsis/metabolismo
5.
Aging Dis ; 12(3): 764-785, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34094641

RESUMEN

CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. Children affected by CDD display a clinical phenotype characterized by early-onset epilepsy, intellectual disability, motor impairment, and autistic-like features. Although the clinical aspects associated with CDKL5 mutations are well described in children, adults with CDD are still under-characterized. Similarly, most animal research has been carried out on young adult Cdkl5 knockout (KO) mice only. Since age represents a risk factor for the worsening of symptoms in many neurodevelopmental disorders, understanding age differences in the development of behavioral deficits is crucial in order to optimize the impact of therapeutic interventions. Here, we compared young adult Cdkl5 KO mice with middle-aged Cdkl5 KO mice, at a behavioral, neuroanatomical, and molecular level. We found an age-dependent decline in motor, cognitive, and social behaviors in Cdkl5 KO mice, as well as in breathing and sleep patterns. The behavioral decline in older Cdkl5 KO mice was not associated with a worsening of neuroanatomical alterations, such as decreased dendritic arborization or spine density, but was paralleled by decreased neuronal survival in different brain regions such as the hippocampus, cortex, and basal ganglia. Interestingly, we found increased ß-galactosidase activity and DNA repair protein levels, γH2AX and XRCC5, in the brains of older Cdkl5 KO mice, which suggests that an absence of Cdkl5 accelerates neuronal senescence/death by triggering irreparable DNA damage. In summary, this work provides evidence that CDKL5 may play a fundamental role in neuronal survival during brain aging and suggests a possible worsening with age of the clinical picture in CDD patients.

6.
Neuropharmacology ; 136(Pt A): 129-145, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28734870

RESUMEN

Although there is much evidence for a role of GABAB receptors in the pathophysiology of anxiety, the underlying neuronal mechanisms are largely unclear. The GABAB receptor allosteric positive modulator, GS39783, exerts anxiolytic effects without interfering with GABAB-mediated modulation of body temperature, cognitive performance and locomotor activity thus offering advantages over GABAB receptor agonists. However, the precise neural circuits underlying the anxiolytic effects of GS39783 are unknown. The aim of the present study was to identify brain structures and associated neuronal circuits that are modulated by GS39783 under either basal or mild stress conditions. To this end, the expression pattern of c-Fos, a marker of neuronal activation, was examined in mice acutely treated with GS39783 under basal conditions or following a mild anxiogenic challenge induced by exposure to the Open Arm (OA) of an Elevated Plus Maze. OA exposure enhanced c-Fos expression in vehicle-treated animals in several brain regions, including the medial prefrontal cortex, lateral septum, amygdala, hippocampus, paraventricular nucleus of the hypothalamus and the periaqueductal gray (PAG). Under basal conditions, GS39783 increased c-Fos in a restricted panel of areas notably amygdala nuclei, cortical areas and PAG subregions, while it inhibited c-Fos expression in the dorsal raphe nucleus (DRN). Under stress conditions, GS39783 reversed OA-induced c-Fos expression in the granular cell layer of the dentate gyrus, no longer increased c-Fos expression in the amygdala nor reduced c-Fos expression in the DRN. These specific patterns of neural activation by GS39783 might explain the neurobiological correlates implicated in GABAB-mediated anti-anxiety effects. This article is part of the "Special Issue Dedicated to Norman G. Bowery".


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclopentanos/farmacología , Agonistas de Receptores GABA-B/farmacología , Pirimidinas/farmacología , Receptores de GABA-B/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ansiedad/patología , Encéfalo/citología , Masculino , Ratones Endogámicos BALB C , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
7.
Front Cell Neurosci ; 10: 261, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27965538

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5-/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5-/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5-/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development.

8.
Neuropharmacology ; 63(8): 1380-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22884610

RESUMEN

GABA(B) receptor antagonists have been shown to have antidepressant-like properties in animal models and thus, could represent a novel approach for the treatment of depression. The neurobiological mechanisms underlying these effects are currently unknown. Adult hippocampal neurogenesis (the birth of new neurons) is thought to play a role in antidepressant drug action. However, the ability of GABA(B) receptors to modulate the proliferation and survival of newly-born cells in the adult hippocampus remains unexplored. Therefore, we investigated whether the GABA(B) receptor antagonist, CGP 52432, can induce antidepressant-like behaviour and increase hippocampal neurogenesis in the stress-sensitive mouse strain, BALB/c. Male mice were treated with CGP 52432 either acutely (one injection, 3; 10; 30 mg/kg, i.p.), subchronically (7 days, 3; 10 mg/kg, i.p.) or chronically (21 days, 3; 10 mg/kg, i.p.) and antidepressant-like behaviour was assessed using the forced swim test (FST). The effects of CGP 52432 on the proliferation and survival of newly-born cells in the hippocampus were assessed using BrdU immunohistochemistry. Acute, subchronic and chronic treatment with CGP 52432 induced antidepressant-like behavioural effects in the FST. Moreover, chronic but not acute or subchronic treatment with CGP 52432 increased hippocampal cell proliferation but had no effect on the survival of newly-born cells. This temporal effect is consistent with the time course for the therapeutic action of antidepressants. Interestingly, CGP 52432-induced increases in cell proliferation occurred in the ventral but not in the dorsal hippocampus. This topographical segregation concurs with the hypothesis that the ventral hippocampus is primarily involved in the regulation of stress and emotionality. Taken together, our data suggest that increased hippocampal cell proliferation is a plausible mechanism for the antidepressant-like effects of GABA(B) receptor antagonists following chronic but not acute treatments. Moreover, altered behavioural effects in the FST does not correlate with changes in neurogenesis.


Asunto(s)
Antidepresivos , Antagonistas del GABA/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Neurogénesis/efectos de los fármacos , Receptores de GABA-B/metabolismo , Animales , Antimetabolitos , Conducta Animal/efectos de los fármacos , Bencilaminas/farmacología , Bromodesoxiuridina , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Ácidos Fosfínicos/farmacología , Receptores de GABA-B/efectos de los fármacos , Natación/psicología
9.
BMC Neurosci ; 11: 55, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20426821

RESUMEN

BACKGROUND: The m-AAA (ATPases Associated with a variety of cellular Activities) is an evolutionary conserved metalloprotease complex located in the internal mitochondrial membrane. In the mouse, it is a hetero-oligomer variably formed by the Spg7, Afg3l1, and Afg3l2 encoded proteins, or a homo-oligomer formed by either Afg3l1 or Afg3l2. In humans, AFG3L2 and SPG7 genes are conserved, whereas AFG3L1 became a pseudogene. Both AFG3L2 and SPG7 are involved in a neurodegenerative disease, namely the autosomal dominant spinocerebellar ataxia SCA28 and a recessive form of spastic paraplegia, respectively. RESULTS: Using quantitative RT-PCR, we measured the expression levels of Spg7, Afg3l1, and Afg3l2 in the mouse brain. In all regions Afg3l2 is the most abundant transcript, followed by Spg7, and Afg3l1, with a ratio of approximately 5:3:1 in whole-brain mRNA. Using in-situ hybridization, we showed that Spg7, Afg3l1 and Afg3l2 have a similar cellular pattern of expression, with high levels in mitral cells, Purkinje cells, deep cerebellar nuclei cells, neocortical and hippocampal pyramidal neurons, and brainstem motor neurons. However, in some neuronal types, differences in the level of expression of these genes were present, suggesting distinct degrees of contribution of their proteins. CONCLUSIONS: Neurons involved in SCA28 and hereditary spastic paraplegia display high levels of expression, but similar or even higher expression is also present in other types of neurons, not involved in these diseases, suggesting that the selective cell sensitivity should be attributed to other, still unknown, mechanisms.


Asunto(s)
Adenosina Trifosfatasas/genética , Encéfalo/enzimología , Regulación Enzimológica de la Expresión Génica/genética , Metaloendopeptidasas/genética , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Encéfalo/citología , Mapeo Encefálico , Metabolismo Energético/genética , Ratones , Membranas Mitocondriales/metabolismo , Neuronas/citología , Neuronas/enzimología , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Paraplejía Espástica Hereditaria/enzimología , Ataxias Espinocerebelosas/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...