Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1234925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900147

RESUMEN

Aim: Wolfram Syndrome (WS) is a rare condition caused by mutations in Wfs1, with a poor prognosis and no cure. Mono-agonists targeting the incretin glucagon-like-peptide 1 (GLP-1) have demonstrated disease-modifying potential in pre-clinical and clinical settings. Dual agonists that target GLP-1 and glucose-dependent insulinotropic polypeptide (GIP-1) are reportedly more efficacious; hence, we evaluated the therapeutic potential of dual incretin agonism in a loss-of-function rat model of WS. Methods: Eight-month-old Wfs1 knock-out (KO) and wild-type control rats were continuously treated with either the dual agonist DA-CH5 or saline for four months. Glycemic profile, visual acuity and hearing sensitivity were longitudinally monitored pre-treatment, and then at 10.5 and 12 months. Pancreata and retina were harvested for immunohistological analysis. Results: DA-CH5 therapy reversed glucose intolerance in KO rats and provided lasting anti-diabetogenic protection. Treatment also reversed intra-islet alterations, including reduced endocrine islet area and ß-cell density, indicating its regenerative potential. Although no rescue effect was noted for hearing loss, visual acuity and retinal ganglion cell density were better preserved in DA-CH5-treated rats. Conclusion: We present preclinical evidence for the pleiotropic therapeutic effects of long-term dual incretin agonist treatment; effects were seen despite treatment beginning after symptom-onset, indicating reversal of disease progression. Dual incretins represent a promising therapeutic avenue for WS patients.


Asunto(s)
Células Secretoras de Insulina , Síndrome de Wolfram , Humanos , Ratas , Animales , Lactante , Incretinas/farmacología , Síndrome de Wolfram/tratamiento farmacológico , Péptido 1 Similar al Glucagón/farmacología , Polipéptido Inhibidor Gástrico
2.
PLoS One ; 17(6): e0268806, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35687549

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to impose a serious burden on health systems globally. Despite worldwide vaccination, social distancing and wearing masks, the spread of the virus is ongoing. One of the mechanisms by which neutralizing antibodies (NAbs) block virus entry into cells encompasses interaction inhibition between the cell surface receptor angiotensin-converting enzyme 2 (ACE2) and the spike (S) protein of SARS-CoV-2. SARS-CoV-2-specific NAb development can be induced in the blood of cattle. Pregnant cows produce NAbs upon immunization, and antibodies move into the colostrum immediately before calving. Here, we immunized cows with SARS-CoV-2 S1 receptor binding domain (RBD) protein in proper adjuvant solutions, followed by one boost with SARS-CoV-2 trimeric S protein and purified immunoglobulins from colostrum. We demonstrate that this preparation indeed blocks the interaction between the trimeric S protein and ACE2 in different in vitro assays. Moreover, we describe the formulation of purified immunoglobulin preparation into a nasal spray. When administered to human subjects, the formulation persisted on the nasal mucosa for at least 4 hours, as determined by a clinical study. Therefore, we are presenting a solution that shows great potential to serve as a prophylactic agent against SARS-CoV-2 infection as an additional measure to vaccination and wearing masks. Moreover, our technology allows for rapid and versatile adaptation for preparing prophylactic treatments against other diseases using the defined characteristics of antibody movement into the colostrum.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Bovinos , Calostro/metabolismo , Femenino , Humanos , Embarazo , Glicoproteína de la Espiga del Coronavirus
3.
Cells ; 10(11)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34831417

RESUMEN

Wolfram syndrome (WS), also known as a DIDMOAD (diabetes insipidus, early-onset diabetes mellitus, optic nerve atrophy and deafness) is a rare autosomal disorder caused by mutations in the Wolframin1 (WFS1) gene. Previous studies have revealed that glucagon-like peptide-1 receptor agonist (GLP1 RA) are effective in delaying and restoring blood glucose control in WS animal models and patients. The GLP1 RA liraglutide has also been shown to have neuroprotective properties in aged WS rats. WS is an early-onset, chronic condition. Therefore, early diagnosis and lifelong pharmacological treatment is the best solution to control disease progression. Hence, the aim of this study was to evaluate the efficacy of the long-term liraglutide treatment on the progression of WS symptoms. For this purpose, 2-month-old WS rats were treated with liraglutide up to the age of 18 months and changes in diabetes markers, visual acuity, and hearing sensitivity were monitored over the course of the treatment period. We found that treatment with liraglutide delayed the onset of diabetes and protected against vision loss in a rat model of WS. Therefore, early diagnosis and prophylactic treatment with the liraglutide may also prove to be a promising treatment option for WS patients by increasing the quality of life.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Liraglutida/uso terapéutico , Degeneración Nerviosa/tratamiento farmacológico , Vías Visuales/patología , Síndrome de Wolfram/tratamiento farmacológico , Animales , Péptido C/metabolismo , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Pérdida Auditiva Sensorineural/complicaciones , Liraglutida/farmacología , Masculino , Degeneración Nerviosa/complicaciones , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Nervio Óptico/ultraestructura , Fenotipo , Ratas , Vías Visuales/efectos de los fármacos , Síndrome de Wolfram/complicaciones
4.
Virology ; 561: 65-68, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34157565

RESUMEN

The global COVID-19 pandemic caused by SARS-CoV-2 predominantly affects the elderly. Differential expression of SARS-CoV-2 entry genes may underlie the variable susceptibility in different patient groups. Here, we examined the gene expression of key SARS-CoV-2 entry factors in mucosal biopsies to delineate the roles of age and existing chronic airway disease. A significant inverse correlation between ACE2 and age and a downregulation of NRP1 in patients with airway disease were noted. These results indicate that the interplay between various factors may influence susceptibility and the disease course.


Asunto(s)
COVID-19/genética , COVID-19/virología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Mucosa Nasal/metabolismo , Mucosa Nasal/virología , SARS-CoV-2/fisiología , Adolescente , Adulto , Factores de Edad , Anciano , Biomarcadores , Niño , Preescolar , Comorbilidad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Internalización del Virus , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...