Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36897815

RESUMEN

When attacked, hagfishes produce a soft, fibrous defensive slime within a fraction of a second by ejecting mucus and threads into seawater. The rapid setup and remarkable expansion of the slime make it a highly effective and unique form of defense. How this biomaterial evolved is unknown, although circumstantial evidence points to the epidermis as the origin of the thread- and mucus-producing cells in the slime glands. Here, we describe large intracellular threads within a putatively homologous cell type from hagfish epidermis. These epidermal threads averaged ~2 mm in length and ~0.5 µm in diameter. The entire hagfish body is covered by a dense layer of epidermal thread cells, with each square millimeter of skin storing a total of ~96 cm threads. Experimentally induced damage to a hagfish's skin caused the release of threads, which together with mucus, formed an adhesive epidermal slime that is more fibrous and less dilute than the defensive slime. Transcriptome analysis further suggests that epidermal threads are ancestral to the slime threads, with duplication and diversification of thread genes occurring in parallel with the evolution of slime glands. Our results support an epidermal origin of hagfish slime, which may have been driven by selection for stronger and more voluminous slime.


Hagfishes are deep-sea animals, and they represent one of the oldest living relatives of animals with backbones. To defend themselves against predators, they produce a remarkable slime that is reinforced with fibers and can clog a predator's gills, thwarting the attack. The slime deploys in less than half a second, exuding from specialized glands on the hagfish's body and expanding up to 10,000 times its ejected volume. The defensive slime is highly dilute, consisting mostly of sea water, with low concentrations of mucus and strong, silk-like threads that are approximately 20 centimeters long. Where and how hagfish slime evolved remains a mystery. Zeng et al. set out to answer where on the hagfish's body the slime glands originated, and how they may have evolved. First, Zeng et al. examined hagfishes and found that cells in the surface layer of their skin (the epidermis) produce threads roughly two millimeters in length that are released when the hagfish's skin is damaged. These threads mix with the mucus that is produced by ruptured skin cells to form a slime that likely adheres to predators' mouths. This slime could be a precursor of the slime produced by the specialized glands. To test this hypothesis, Zeng et al. analyzed which genes are turned on and off both in the hagfishes' skin and in their slime glands. The patterns they found are consistent with the slime glands originating from the epidermis. Based on these results, Zeng et al. propose that ancient hagfishes first evolved the ability to produce slime with anti-predator effects when their skin was damaged in attacks. Over time, hagfishes that could produce and store more slime and eject it actively into a predator's mouth likely had a better chance of surviving. This advantage may have led to the appearance of increasingly specialized glands that could carry out these functions. The findings of Zeng et al. will be of interest to evolutionary biologists, marine biologists, and those studying the ecology of predator-prey interactions. Because of its unique material properties, hagfish slime is also of interest to biophysicists, bioengineers and those engaged in biomimetic research. The origin of hagfish slime glands is an interesting example of how a new trait evolved, and may provide insight into the evolution of other adaptive traits.


Asunto(s)
Anguila Babosa , Animales , Anguila Babosa/metabolismo , Epidermis , Moco/metabolismo , Células Caliciformes , Células Epidérmicas
2.
Nat Ecol Evol ; 6(6): 750-762, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35393600

RESUMEN

Symbiotic microbial communities of sponges serve critical functions that have shaped the evolution of reef ecosystems since their origins. Symbiont abundance varies tremendously among sponges, with many species classified as either low microbial abundance (LMA) or high microbial abundance (HMA), but the evolutionary dynamics of these symbiotic states remain unknown. This study examines the LMA/HMA dichotomy across an exhaustive sampling of Caribbean sponge biodiversity and predicts that the LMA symbiotic state is the ancestral state among sponges. Conversely, HMA symbioses, consisting of more specialized microorganisms, have evolved multiple times by recruiting similar assemblages, mostly since the rise of scleractinian-dominated reefs. Additionally, HMA symbioses show stronger signals of phylosymbiosis and cophylogeny, consistent with stronger co-evolutionary interaction in these complex holobionts. These results indicate that HMA holobionts are characterized by increased endemism, metabolic dependence and chemical defences. The selective forces driving these patterns may include the concurrent increase in dissolved organic matter in reef ecosystems or the diversification of spongivorous fishes.


Asunto(s)
Bacterias , Microbiota , Biodiversidad , Filogenia , Simbiosis
3.
BMC Ecol Evol ; 21(1): 43, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726665

RESUMEN

BACKGROUND: Phylogenomic approaches have great power to reconstruct evolutionary histories, however they rely on multi-step processes in which each stage has the potential to affect the accuracy of the final result. Many studies have empirically tested and established methodology for resolving robust phylogenies, including selecting appropriate evolutionary models, identifying orthologs, or isolating partitions with strong phylogenetic signal. However, few have investigated errors that may be initiated at earlier stages of the analysis. Biases introduced during the generation of the phylogenomic dataset itself could produce downstream effects on analyses of evolutionary history. Transcriptomes are widely used in phylogenomics studies, though there is little understanding of how a poor-quality assembly of these datasets could impact the accuracy of phylogenomic hypotheses. Here we examined how transcriptome assembly quality affects phylogenomic inferences by creating independent datasets from the same input data representing high-quality and low-quality transcriptome assembly outcomes. RESULTS: By studying the performance of phylogenomic datasets derived from alternative high- and low-quality assembly inputs in a controlled experiment, we show that high-quality transcriptomes produce richer phylogenomic datasets with a greater number of unique partitions than low-quality assemblies. High-quality assemblies also give rise to partitions that have lower alignment ambiguity and less compositional bias. In addition, high-quality partitions hold stronger phylogenetic signal than their low-quality transcriptome assembly counterparts in both concatenation- and coalescent-based analyses. CONCLUSIONS: Our findings demonstrate the importance of transcriptome assembly quality in phylogenomic analyses and suggest that a portion of the uncertainty observed in such studies could be alleviated at the assembly stage.


Asunto(s)
Genómica , Transcriptoma , Sesgo , Evolución Biológica , Filogenia
4.
Genome Biol Evol ; 12(10): 1681-1693, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32653903

RESUMEN

Apoptosis is a fundamental feature of multicellular animals and is best understood in mammals, flies, and nematodes, with the invertebrate models being thought to represent a condition of ancestral simplicity. However, the existence of a leukemia-like cancer in the softshell clam Mya arenaria provides an opportunity to re-evaluate the evolution of the genetic machinery of apoptosis. Here, we report the whole-genome sequence for M. arenaria which we leverage with existing data to test evolutionary hypotheses on the origins of apoptosis in animals. We show that the ancestral bilaterian p53 locus, a master regulator of apoptosis, possessed a complex domain structure, in contrast to that of extant ecdysozoan p53s. Further, ecdysozoan taxa, but not chordates or lophotrochozoans like M. arenaria, show a widespread reduction in apoptosis gene copy number. Finally, phylogenetic exploration of apoptosis gene copy number reveals a striking linkage with p53 domain complexity across species. Our results challenge the current understanding of the evolution of apoptosis and highlight the ancestral complexity of the bilaterian apoptotic tool kit and its subsequent dismantlement during the ecdysozoan radiation.


Asunto(s)
Apoptosis/genética , Genes p53 , Genoma , Mya/genética , Filogenia , Animales
5.
J Biol Chem ; 294(21): 8351-8360, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30962282

RESUMEN

Phosphodiesterase-6 (PDE6) plays a central role in both rod and cone phototransduction pathways. In the dark, PDE6 activity is suppressed by its inhibitory γ-subunit (Pγ). Rhodopsin-catalyzed activation of the G protein transducin relieves this inhibition and enhances PDE6 catalysis. We hypothesized that amino acid sequence differences between rod- and cone-specific Pγs underlie transducin's ability to more effectively activate cone-specific PDE6 than rod PDE6. To test this, we analyzed rod and cone Pγ sequences from all major vertebrate and cyclostome lineages and found that rod Pγ loci are far more conserved than cone Pγ sequences and that most of the sequence differences are located in the N-terminal region. Next we reconstituted rod PDE6 catalytic dimer (Pαß) with various rod or cone Pγ variants and analyzed PDE6 activation upon addition of the activated transducin α-subunit (Gtα*-GTPγS). This analysis revealed a rod-specific Pγ motif (amino acids 9-18) that reduces the ability of Gtα*-GTPγS to activate the reconstituted PDE6. In cone Pγ, Asn-13 and Gln-14 significantly enhanced Gtα*-GTPγS activation of cone Pγ truncation variants. Moreover, we observed that the first four amino acids of either rod or cone Pγ contribute to Gtα*-GTPγS-mediated activation of PDE6. We conclude that physiological differences between rod and cone photoreceptor light responsiveness can be partially ascribed to ancient, highly conserved amino acid differences in the N-terminal regions of Pγ isoforms, demonstrating for the first time a functional role for this region of Pγ in the differential activation of rod and cone PDE6 by transducin.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/química , Guanosina 5'-O-(3-Tiotrifosfato)/química , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Bastones/enzimología , Animales , Catálisis , Bovinos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6/metabolismo
6.
Dev Biol ; 443(2): 188-202, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30243673

RESUMEN

A fundamental question in evolutionary biology is how developmental processes are modified to produce morphological innovations while abiding by functional constraints. Here we address this question by investigating the cellular mechanism responsible for the transition between fused and open rhabdoms in ommatidia of apposition compound eyes; a critical step required for the development of visual systems based on neural superposition. Utilizing Drosophila and Tribolium as representatives of fused and open rhabdom morphology in holometabolous insects respectively, we identified three changes required for this innovation to occur. First, the expression pattern of the extracellular matrix protein Eyes Shut (EYS) was co-opted and expanded from mechanosensory neurons to photoreceptor cells in taxa with open rhabdoms. Second, EYS homologs obtained a novel extension of the amino terminus leading to the internalization of a cleaved signal sequence. This amino terminus extension does not interfere with cleavage or function in mechanosensory neurons, but it does permit specific targeting of the EYS protein to the apical photoreceptor membrane. Finally, a specific interaction evolved between EYS and a subset of Prominin homologs that is required for the development of open, but not fused, rhabdoms. Together, our findings portray a case study wherein the evolution of a set of molecular novelties has precipitated the origin of an adaptive photoreceptor cell arrangement.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Células Fotorreceptoras/fisiología , Animales , Artrópodos/metabolismo , Evolución Biológica , Ojo Compuesto de los Artrópodos/metabolismo , Ojo Compuesto de los Artrópodos/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Evolución Molecular , Proteínas del Ojo/metabolismo , Sistemas de Lectura Abierta/genética , Células Fotorreceptoras/metabolismo , Filogenia , Tribolium/embriología , Tribolium/metabolismo
7.
Genome Biol Evol ; 9(12): 3312-3327, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29186370

RESUMEN

Geosmithia morbida is an emerging fungal pathogen which serves as a model for examining the evolutionary processes behind pathogenicity because it is one of two known pathogens within a genus of mostly saprophytic, beetle-associated, fungi. This pathogen causes thousand cankers disease in black walnut trees and is vectored into the host via the walnut twig beetle. Geosmithia morbida was first detected in western United States and currently threatens the timber industry concentrated in eastern United States. We sequenced the genomes of G. morbida in a previous study and two nonpathogenic Geosmithia species in this work and compared these species to other fungal pathogens and nonpathogens to identify genes under positive selection in G. morbida that may be associated with pathogenicity. Geosmithia morbida possesses one of the smallest genomes among the fungal species observed in this study, and one of the smallest fungal pathogen genomes to date. The enzymatic profile in this pathogen is very similar to its nonpathogenic relatives. Our findings indicate that genome reduction or retention of a smaller genome may be an important adaptative force during the evolution of a specialized lifestyle in fungal species that occupy a specificniche, such as beetle vectored tree pathogens. We also present potential genes under selection in G. morbida that could be important for adaptation to a pathogenic lifestyle.


Asunto(s)
Escarabajos/microbiología , Genoma Fúngico , Interacciones Huésped-Patógeno , Hypocreales/genética , Enfermedades de las Plantas/microbiología , Animales , Genómica , Hypocreales/clasificación , Hypocreales/patogenicidad , Proteínas de Insectos/genética , Juglans/microbiología , Filogenia , Estándares de Referencia , Análisis de Secuencia de ADN
8.
Gen Comp Endocrinol ; 234: 10-9, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27318276

RESUMEN

The discovery of genes related to gonadotropin-releasing hormones (GnRH) and their receptors from diverse species has driven important advances in comparative endocrinology. However, our view of the evolutionary histories and nomenclature of these gene families has become inconsistent as several different iterations of GnRH and receptor relationships have been proposed. Whole genome sequence data are now available for most of the major lineages of animals, and an exhaustive view of the phylogenies of GnRH and their receptors is now possible. In this paper, we leverage data from publically available whole genome sequences to present a new phylogenomic analysis of GnRH and GnRH receptors and the distant relatives of each across metazoan phylogeny. Our approach utilizes a phylogenomics pipeline that searches data from 36 whole genome sequences and conducts phylogenetic analyses of gene trees. We provide a comprehensive analysis of the major groupings of GnRH peptides, related hormones and their receptors and provide some suggestions for a new nomenclature. Our study provides a framework for understanding the functional diversification of this family of neuromodulatory peptides and their receptors.


Asunto(s)
Evolución Molecular , Hormona Liberadora de Gonadotropina/genética , Filogenia , Animales
9.
BMC Genomics ; 16: 987, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26596625

RESUMEN

BACKGROUND: Understanding the phylogenetic relationships among major lineages of multicellular animals (the Metazoa) is a prerequisite for studying the evolution of complex traits such as nervous systems, muscle tissue, or sensory organs. Transcriptome-based phylogenies have dramatically improved our understanding of metazoan relationships in recent years, although several important questions remain. The branching order near the base of the tree, in particular the placement of the poriferan (sponges, phylum Porifera) and ctenophore (comb jellies, phylum Ctenophora) lineages is one outstanding issue. Recent analyses have suggested that the comb jellies are sister to all remaining metazoan phyla including sponges. This finding is surprising because it suggests that neurons and other complex traits, present in ctenophores and eumetazoans but absent in sponges or placozoans, either evolved twice in Metazoa or were independently, secondarily lost in the lineages leading to sponges and placozoans. RESULTS: To address the question of basal metazoan relationships we assembled a novel dataset comprised of 1080 orthologous loci derived from 36 publicly available genomes representing major lineages of animals. From this large dataset we procured an optimized set of partitions with high phylogenetic signal for resolving metazoan relationships. This optimized data set is amenable to the most appropriate and computationally intensive analyses using site-heterogeneous models of sequence evolution. We also employed several strategies to examine the potential for long-branch attraction to bias our inferences. Our analyses strongly support the Ctenophora as the sister lineage to other Metazoa. We find no support for the traditional view uniting the ctenophores and Cnidaria. Our findings are supported by Bayesian comparisons of topological hypotheses and we find no evidence that they are biased by long-branch attraction. CONCLUSIONS: Our study further clarifies relationships among early branching metazoan lineages. Our phylogeny supports the still-controversial position of ctenophores as sister group to all other metazoans. This study also provides a workflow and computational tools for minimizing systematic bias in genome-based phylogenetic analyses. Future studies of metazoan phylogeny will benefit from ongoing efforts to sequence the genomes of additional invertebrate taxa that will continue to inform our view of the relationships among the major lineages of animals.


Asunto(s)
Ctenóforos/genética , Minería de Datos , Genómica , Filogenia , Animales , Sesgo , Evolución Molecular , Sitios Genéticos/genética , Humanos
10.
Genome Res ; 24(7): 1209-23, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24985915

RESUMEN

Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.


Asunto(s)
Biología Computacional/métodos , Drosophila melanogaster/genética , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Transcriptoma , Animales , Análisis por Conglomerados , Drosophila melanogaster/clasificación , Evolución Molecular , Exones , Femenino , Genoma de los Insectos , Humanos , Masculino , Motivos de Nucleótidos , Filogenia , Posición Específica de Matrices de Puntuación , Regiones Promotoras Genéticas , Edición de ARN , Sitios de Empalme de ARN , Empalme del ARN , Reproducibilidad de los Resultados , Sitio de Iniciación de la Transcripción
11.
Proc Natl Acad Sci U S A ; 111(35): E3659-68, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25071211

RESUMEN

Recent progress in resolving the tree of life continues to expose relationships that resist resolution, which drives the search for novel sources of information to solve these difficult phylogenetic problems. A recent example, the presence and absence of microRNA families, has been vigorously promoted as an ideal source of phylogenetic data and has been applied to several perennial phylogenetic problems. The utility of such data for phylogenetic inference hinges critically both on developing stochastic models that provide a reasonable description of the process that give rise to these data, and also on the careful validation of those models in real inference scenarios. Remarkably, however, the statistical behavior and phylogenetic utility of microRNA data have not yet been rigorously characterized. Here we explore the behavior and performance of microRNA presence/absence data under a variety of evolutionary models and reexamine datasets from several previous studies. We find that highly heterogeneous rates of microRNA gain and loss, pervasive secondary loss, and sampling error collectively render microRNA-based inference of phylogeny difficult. Moreover, our reanalyses fundamentally alter the conclusions for four of the five studies that we reexamined. Our results indicate that the capacity of miRNA data to resolve the tree of life has been overstated, and we urge caution in their application and interpretation.


Asunto(s)
Evolución Biológica , MicroARNs/genética , Modelos Genéticos , Filogenia , Anfibios , Animales , Anélidos , Teorema de Bayes , Aves , Peces , Reproducibilidad de los Resultados , Reptiles , Proyectos de Investigación , Procesos Estocásticos , Turbelarios , Incertidumbre
12.
Dev Genes Evol ; 224(3): 175-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24903586

RESUMEN

The family of Doublesex-Mab-3 Related Transcription factors (DMRTs) includes key regulators of sexual differentiation and neurogenesis. To help understand the functional diversification of this gene family, we examined DMRT gene complements from the whole genome sequences and predicted gene models of 32 animal species representing 12 different phyla and from several non-metazoan outgroups. DMRTs are present in all animals except the sponge Amphimedon queenslandica, but are not found in any of the outgroups, indicating that this gene family is specific to animals and has an ancient pre-eumetazoan origin. Our analyses suggest that DMRT genes diversified independently in bilaterian and non-bilaterian animals. Most clades in the DMRT gene tree, including those containing the well-characterized DMRT1 and doublesex genes, have phylogenetically limited distributions.


Asunto(s)
Evolución Molecular , Poríferos/genética , Factores de Transcripción/genética , Animales , Filogenia , Poríferos/clasificación
13.
Integr Comp Biol ; 54(2): 276-83, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24935986

RESUMEN

Advances in sequencing technology have forced a quantitative revolution in Evolutionary Biology. One important feature of this renaissance is that comprehensive genomic resources can be obtained quickly for almost any taxon, thus speeding the development of new model organisms. Here, we analyze 20 RNA-seq libraries from morphologically, sexually, and genetically distinct polyp types from the gonochoristic colonial hydrozoan, Hydractinia symbiolongicarpus (Cnidaria). Analyses of these data using weighted gene co-expression networks highlight deeply conserved genetic elements of animal spermatogenesis and demonstrate the utility of these methods in identifying modules of genes that correlate with different zooid types across various statistical contrasts. RNA-seq data and analytical scripts described here are deposited in publicly available databases.


Asunto(s)
Expresión Génica , Redes Reguladoras de Genes , Hidrozoos/genética , Animales , Biblioteca de Genes , Datos de Secuencia Molecular , Análisis de Secuencia de ARN
14.
PLoS One ; 8(12): e84160, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358338

RESUMEN

The sequencing depth necessary for documenting differential gene expression using RNA-Seq has been little explored outside of model systems. In particular, the depth required to analyze large-scale patterns of differential transcription factor expression is not known. The goal of the present study is to explore the effectiveness of shallow (relatively low read depth) RNA-Seq. We focus on two tissues in the honey bee: the sting gland and the digestive tract. The sting gland is an experimentally well-understood tissue that we use to benchmark the utility of this approach. We use the digestive tract to test the results obtained with the sting gland, and to conduct RNA-Seq between tissue types. Using a list of experimentally verified genes conferring tissue-specific functions in the sting gland, we show that relatively little read depth is necessary to identify them. We argue that this result should be broadly applicable, since genes important for tissue-specific functions often have robust expression patterns, and because we obtained similar results in our analysis of the digestive tract. Furthermore, we demonstrate that the differential expression of transcription factors, which are transcribed at low levels compared to other genes, can nevertheless often be determined using shallow RNA-Seq. Overall, we find over 150 differentially expressed transcription factors in our tissues at a read depth of only 12 million. This work shows the utility of low-depth sequencing for identifying genes important for tissue-specific functions. It also verifies the often-held belief that transcription factors show low levels of expression, while demonstrating that, in spite of this, they are frequently amenable to shallow RNA-Seq. Our findings should be of benefit to researchers using RNA-Seq in many different biological systems.


Asunto(s)
Perfilación de la Expresión Génica , Expresión Génica , Análisis de Secuencia de ARN , Animales , Abejas/genética , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Factores de Transcripción , Transcriptoma
15.
BMC Genomics ; 14: 586, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23985010

RESUMEN

BACKGROUND: A composite biological structure, such as an insect head or abdomen, contains many internal structures with distinct functions. Composite structures are often used in RNA-seq studies, though it is unclear how expression of the same gene in different tissues and structures within the same structure affects the measurement (or even utility) of the resulting patterns of gene expression. Here we determine how complex composite tissue structure affects measures of gene expression using RNA-seq. RESULTS: We focus on two structures in the honey bee (the sting gland and digestive tract) both contained within one larger structure, the whole abdomen. For each of the three structures, we used RNA-seq to identify differentially expressed genes between two developmental stages, nurse bees and foragers. Based on RNA-seq for each structure-specific extraction, we found that RNA-seq with composite structures leads to many false negatives (genes strongly differentially expressed in particular structures which are not found to be differentially expressed within the composite structure). We also found a significant number of genes with one pattern of differential expression in the tissue-specific extraction, and the opposite in the composite extraction, suggesting multiple signals from such genes within the composite structure. We found these patterns for different classes of genes including transcription factors. CONCLUSIONS: Many RNA-seq studies currently use composite extractions, and even whole insect extractions, when tissue and structure specific extractions are possible. This is due to the logistical difficultly of micro-dissection and unawareness of the potential errors associated with composite extractions. The present study suggests that RNA-seq studies of composite structures are prone to false negatives and difficult to interpret positive signals for genes with variable patterns of local expression. In general, our results suggest that RNA-seq on large composite structures should be avoided unless it is possible to demonstrate that the effects shown here do not exist for the genes of interest.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia de ARN , Animales , Venenos de Abeja/genética , Venenos de Abeja/metabolismo , Abejas/genética , Abejas/metabolismo , Reacciones Falso Negativas , Tracto Gastrointestinal/metabolismo , Genes de Insecto , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Especificidad de Órganos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
16.
J Exp Biol ; 215(Pt 8): 1278-86, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22442365

RESUMEN

Many larval sponges possess pigment ring eyes that apparently mediate phototactic swimming. Yet sponges are not known to possess nervous systems or opsin genes, so the unknown molecular components of sponge phototaxis must differ fundamentally from those in other animals, inspiring questions about how this sensory system functions. Here we present molecular and biochemical data on cryptochrome, a candidate gene for functional involvement in sponge pigment ring eyes. We report that Amphimedon queenslandica, a demosponge, possesses two cryptochrome/photolyase genes, Aq-Cry1 and Aq-Cry2. The mRNA of one gene (Aq-Cry2) is expressed in situ at the pigment ring eye. Additionally, we report that Aq-Cry2 lacks photolyase activity and contains a flavin-based co-factor that is responsive to wavelengths of light that also mediate larval photic behavior. These results suggest that Aq-Cry2 may act in the aneural, opsin-less phototaxic behavior of a sponge.


Asunto(s)
Criptocromos/metabolismo , Ojo/inervación , Ojo/metabolismo , Luz , Neuronas/metabolismo , Opsinas/metabolismo , Poríferos/metabolismo , Animales , Reparación del ADN/efectos de la radiación , Ojo/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Neuronas/efectos de la radiación , Filogenia , Poríferos/genética , Poríferos/crecimiento & desarrollo , Proteolisis/efectos de la radiación , Análisis Espectral
17.
BMC Biol ; 10: 17, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22390726

RESUMEN

BACKGROUND: Cnidocytes, the eponymous cell type of the Cnidaria, facilitate both sensory and secretory functions and are among the most complex animal cell types known. In addition to their structural complexity, cnidocytes display complex sensory attributes, integrating both chemical and mechanical cues from the environment into their discharge behavior. Despite more than a century of work aimed at understanding the sensory biology of cnidocytes, the specific sensory receptor genes that regulate their function remain unknown. RESULTS: Here we report that light also regulates cnidocyte function. We show that non-cnidocyte neurons located in battery complexes of the freshwater polyp Hydra magnipapillata specifically express opsin, cyclic nucleotide gated (CNG) ion channel and arrestin, which are all known components of bilaterian phototransduction cascades. We infer from behavioral trials that different light intensities elicit significant effects on cnidocyte discharge propensity. Harpoon-like stenotele cnidocytes show a pronounced diminution of discharge behavior under bright light conditions as compared to dim light. Further, we show that suppression of firing by bright light is ablated by cis-diltiazem, a specific inhibitor of CNG ion channels. CONCLUSIONS: Our results implicate an ancient opsin-mediated phototransduction pathway and a previously unknown layer of sensory complexity in the control of cnidocyte discharge. These findings also suggest a molecular mechanism for the regulation of other cnidarian behaviors that involve both photosensitivity and cnidocyte function, including diurnal feeding repertoires and/or substrate-based locomotion. More broadly, our findings highlight one novel, non-visual function for opsin-mediated phototransduction in a cnidarian, the origins of which might have preceded the evolution of cnidarian eyes.


Asunto(s)
Hydra/citología , Hydra/fisiología , Fototransducción/fisiología , Luz , Opsinas/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Diltiazem/farmacología , Perfilación de la Expresión Génica , Hydra/efectos de los fármacos , Neuronas/metabolismo , Opsinas/genética
18.
Nature ; 466(7307): 720-6, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20686567

RESUMEN

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Asunto(s)
Evolución Molecular , Genoma/genética , Poríferos/genética , Animales , Apoptosis/genética , Adhesión Celular/genética , Ciclo Celular/genética , Polaridad Celular/genética , Proliferación Celular , Genes/genética , Genómica , Humanos , Inmunidad Innata/genética , Modelos Biológicos , Neuronas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/genética , Filogenia , Poríferos/anatomía & histología , Poríferos/citología , Poríferos/inmunología , Análisis de Secuencia de ADN , Transducción de Señal/genética
19.
BMC Evol Biol ; 10: 123, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20433736

RESUMEN

BACKGROUND: Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes. RESULTS: Using protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene families known to be involved in eye development or phototransduction and deduced their phylogenetic relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes. Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a significantly higher rate than those within a randomly shuffled matrix, many genes with known functional relationships in model organisms did not co-duplicate more often than expected by chance. CONCLUSIONS: Overall, and when accounting for factors such as differential rates of whole-genome duplication in different groups, our results are broadly consistent with the hypothesis that genes involved in eye development and phototransduction duplicate at a higher rate in Pancrustacea, the group with the greatest variety of optical designs. The result that these genes have a significantly high number of co-duplications and co-losses could be influenced by shared functions or other unstudied factors such as synteny. Since we did not observe co-duplication/co-loss of genes for all known functional modules (e.g. specific regulatory networks), the interactions among suites of known co-functioning genes (modules) may be plastic at the temporal scale of analysis performed here. Other factors in addition to gene duplication - such as cis-regulation, heterotopy, and co-option - are also likely to be strong factors in the diversification of eye types.


Asunto(s)
Crustáceos/genética , Evolución Molecular , Ojo/crecimiento & desarrollo , Duplicación de Gen , Animales , Hibridación Genómica Comparativa , Daphnia/genética , Ojo/anatomía & histología , Proteínas del Ojo/genética , Genómica/métodos , Proteínas de Homeodominio/genética , Familia de Multigenes , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Filogenia , Proteínas Represoras/genética , Análisis de Secuencia de ADN , Vertebrados/genética
20.
Proc Biol Sci ; 277(1690): 1963-9, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20219739

RESUMEN

The evolutionary histories of complex traits are complicated because such traits are comprised of multiple integrated and interacting components, which may have different individual histories. Phylogenetic studies of complex trait evolution often do not take this into account, instead focusing only on the history of whole, integrated traits; for example, mapping eyes as simply present or absent through history. Using the biochemistry of animal vision as a model, we demonstrate how investigating the individual components of complex systems can aid in elucidating both the origins and diversification of such systems. Opsin-based phototransduction underlies all visual phenotypes in animals, using complex protein cascades that translate light information into changes in cyclic nucleotide gated (CNG) or canonical transient receptor potential (TRPC) ion-channel activity. Here we show that CNG ion channels play a role in cnidarian phototransduction. Transcripts of a CNG ion channel co-localize with opsin in specific cell types of the eyeless cnidarian Hydra magnipapillata. Further, the CNG inhibitor cis-diltiazem ablates a stereotypical photoresponse in the hydra. Our findings in the Cnidaria, the only non-bilaterian lineage to possess functional opsins, allow us to trace the history of CNG-based photosensitivity to the very origin of animal phototransduction. Our general analytical approach, based on explicit phylogenetic analysis of individual components, contrasts the deep evolutionary history of CNG-based phototransduction, today used in vertebrate vision, with the more recent assembly of TRPC-based systems that are common to protostome (e.g. fly and mollusc) vision.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Evolución Molecular , Hydra , Fototransducción , Opsinas , Animales , Cnidarios/genética , Cnidarios/fisiología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Hydra/genética , Hydra/fisiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Fototransducción/genética , Fototransducción/fisiología , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras , Filogenia , Visión Ocular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...