Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Med Phys ; 50(11): 7222-7235, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722718

RESUMEN

BACKGROUND: Standardized patient-specific pretreatment dosimetry planning is mandatory in the modern era of nuclear molecular radiotherapy, which may eventually lead to improvements in the final therapeutic outcome. Only a comprehensive definition of a dosage therapeutic window encompassing the range of absorbed doses, that is, helpful without being detrimental can lead to therapy individualization and improved outcomes. As a result, setting absorbed dose safety limits for organs at risk (OARs) requires knowledge of the absorbed dose-effect relationship. Data sets of consistent and reliable inter-center dosimetry findings are required to characterize this relationship. PURPOSE: We developed and standardized a new pretreatment planning model consisting of a predictive dosimetry procedure for OARs in patients with neuroendocrine tumors (NETs) treated with 177 Lu-DOTATATE (Lutathera). In the retrospective study described herein, we used machine learning (ML) regression algorithms to predict absorbed doses in OARs by exploiting a combination of radiomic and dosiomic features extracted from patients' imaging data. METHODS: Pretreatment and posttreatment data for 20 patients with NETs treated with 177 Lu-DOTATATE were collected from two clinical centers. A total of 3412 radiomic and dosiomic features were extracted from the patients' computed tomography (CT) scans and dose maps, respectively. All dose maps were generated using Monte Carlo simulations. An ML regression model was designed based on ML algorithms for predicting the absorbed dose in every OAR (liver, left kidney, right kidney, and spleen) before and after the therapy and between each therapy session, thus predicting any possible radiotoxic effects. RESULTS: We evaluated nine ML regression algorithms. Our predictive model achieved a mean absolute dose error (MAE, in Gy) of 0.61 for the liver, 1.58 for the spleen, 1.30 for the left kidney, and 1.35 for the right kidney between pretherapy 68 Ga-DOTATOC positron emission tomography (PET)/CT and posttherapy 177 Lu-DOTATATE single photon emission (SPECT)/CT scans. Τhe best predictive performance observed was based on the gradient boost for the liver, the left kidney and the right kidney, and on the extra tree regressor for the spleen. Evaluation of the model's performance according to its ability to predict the absorbed dose in each OAR in every possible combination of pretherapy 68 Ga-DOTATOC PET/CT and any posttherapy 177 Lu-DOTATATE treatment cycle SPECT/CT scans as well as any 177 Lu-DOTATATE SPECT/CT treatment cycle and the consequent 177 Lu-DOTATATE SPECT/CT treatment cycle revealed mean absorbed dose differences ranges from -0.55 to 0.68 Gy. Incorporating radiodosiomics features from the 68 Ga-DOTATOC PET/CT and first 177 Lu-DOTATATE SPECT/CT treatment cycle scans further improved the precision and minimized the standard deviation of the predictions in nine out of 12 instances. An average improvement of 57.34% was observed (range: 17.53%-96.12%). However, it's important to note that in three instances (i.e., Ga,C.1 â†’ C3 in spleen and left kidney, and Ga,C.1 â†’ C2 in right kidney) we did not observe an improvement (absolute differences of 0.17, 0.08, and 0.05 Gy, respectively). Wavelet-based features proved to have high correlated predictive value, whereas non-linear-based ML regression algorithms proved to be more capable than the linear-based of producing precise prediction in our case. CONCLUSIONS: The combination of radiomics and dosiomics has potential utility for personalized molecular radiotherapy (PMR) response evaluation and OAR dose prediction. These radiodosiomic features can potentially provide information on any possible disease recurrence and may be highly useful in clinical decision-making, especially regarding dose escalation issues.


Asunto(s)
Tumores Neuroendocrinos , Compuestos Organometálicos , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Cintigrafía , Octreótido/efectos adversos , Compuestos Organometálicos/uso terapéutico , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/radioterapia
2.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34771479

RESUMEN

This study aims to validate GATE and GGEMS simulation toolkits for brachytherapy applications and to provide accurate models for six commercial brachytherapy seeds, which will be freely available for research purposes. The AAPM TG-43 guidelines were used for the validation of two Low Dose Rate (LDR), three High Dose Rate (HDR), and one Pulsed Dose Rate (PDR) brachytherapy seeds. Each seed was represented as a 3D model and then simulated in GATE to produce one single Phase-Space (PHSP) per seed. To test the validity of the simulations' outcome, referenced data (provided by the TG-43) was compared with GATE results. Next, validation of the GGEMS toolkit was achieved by comparing its outcome with the GATE MC simulations, incorporating clinical data. The simulation outcomes on the radial dose function (RDF), anisotropy function (AF), and dose rate constant (DRC) for the six commercial seeds were compared with TG-43 values. The statistical uncertainty was limited to 1% for RDF, to 6% (maximum) for AF, and to 2.7% (maximum) for the DRC. GGEMS provided a good agreement with GATE when compared in different situations: (a) Homogeneous water sphere, (b) heterogeneous CT phantom, and (c) a realistic clinical case. In addition, GGEMS has the advantage of very fast simulations. For the clinical case, where TG-186 guidelines were considered, GATE required 1 h for the simulation while GGEMS needed 162 s to reach the same statistical uncertainty. This study produced accurate models and simulations of their emitted spectrum of commonly used commercial brachytherapy seeds which are freely available to the scientific community. Furthermore, GGEMS was validated as an MC GPU based tool for brachytherapy. More research is deemed necessary for the expansion of brachytherapy seed modeling.

3.
Med Phys ; 48(11): 7427-7438, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34628667

RESUMEN

BACKGROUND: Radioembolization with 90 Y microspheres is a treatment approach for liver cancer. Currently, employed dosimetric calculations exhibit low accuracy, lacking consideration of individual patient, and tissue characteristics. PURPOSE: The purpose of the present study was to employ deep learning (DL) algorithms to differentiate patterns of pretreatment distribution of 99m Tc-macroaggregated albumin on SPECT/CT and post-treatment distribution of 90 Y microspheres on PET/CT and to accurately predict how the 90 Y-microspheres will be distributed in the liver tissue by radioembolization therapy. METHODS: Data for 19 patients with liver cancer (10 with hepatocellular carcinoma, 5 with intrahepatic cholangiocarcinoma, 4 with liver metastases) who underwent radioembolization with 90 Y microspheres were used for the DL training. We developed a 3D voxel-based variation of the Pix2Pix model, which is a special type of conditional GANs designed to perform image-to-image translation. SPECT and CT scans along with the clinical target volume for each patient were used as inputs, as were their corresponding post-treatment PET scans. The real and predicted absorbed PET doses for the tumor and the whole liver area were compared. Our model was evaluated using the leave-one-out method, and the dose calculations were measured using a tissue-specific dose voxel kernel. RESULTS: The comparison of the real and predicted PET/CT scans showed an average absorbed dose difference of 5.42% ± 19.31% and 0.44% ± 1.64% for the tumor and the liver area, respectively. The average absorbed dose differences were 7.98 ± 31.39 Gy and 0.03 ± 0.25 Gy for the tumor and the non-tumor liver parenchyma, respectively. Our model had a general tendency to underpredict the dosimetric results; the largest differences were noticed in one case, where the model underestimated the dose to the tumor area by 56.75% or 72.82 Gy. CONCLUSIONS: The proposed deep-learning-based pretreatment planning method for liver radioembolization accurately predicted 90 Y microsphere biodistribution. Its combination with a rapid and accurate 3D dosimetry method will render it clinically suitable and could improve patient-specific pretreatment planning.


Asunto(s)
Aprendizaje Profundo , Embolización Terapéutica , Neoplasias Hepáticas , Humanos , Hígado/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/radioterapia , Microesferas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Agregado de Albúmina Marcado con Tecnecio Tc 99m , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Radioisótopos de Itrio/uso terapéutico
4.
Phys Med ; 83: 108-121, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33765601

RESUMEN

Over the last decade there has been an extensive evolution in the Artificial Intelligence (AI) field. Modern radiation oncology is based on the exploitation of advanced computational methods aiming to personalization and high diagnostic and therapeutic precision. The quantity of the available imaging data and the increased developments of Machine Learning (ML), particularly Deep Learning (DL), triggered the research on uncovering "hidden" biomarkers and quantitative features from anatomical and functional medical images. Deep Neural Networks (DNN) have achieved outstanding performance and broad implementation in image processing tasks. Lately, DNNs have been considered for radiomics and their potentials for explainable AI (XAI) may help classification and prediction in clinical practice. However, most of them are using limited datasets and lack generalized applicability. In this study we review the basics of radiomics feature extraction, DNNs in image analysis, and major interpretability methods that help enable explainable AI. Furthermore, we discuss the crucial requirement of multicenter recruitment of large datasets, increasing the biomarkers variability, so as to establish the potential clinical value of radiomics and the development of robust explainable AI models.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Estudios Multicéntricos como Asunto , Redes Neurales de la Computación
5.
Cancer Biother Radiopharm ; 36(10): 809-819, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33656372

RESUMEN

Background: The purpose of this study was to develop a rapid, reliable, and efficient tool for three-dimensional (3D) dosimetry treatment planning and post-treatment evaluation of liver radioembolization with 90Y microspheres, using tissue-specific dose voxel kernels (DVKs) that can be used in everyday clinical practice. Materials and Methods: Two tissue-specific DVKs for 90Y were calculated through Monte Carlo (MC) simulations. DVKs for the liver and lungs were generated, and the dose distribution was compared with direct MC simulations. A method was developed to produce a 3D dose map by convolving the calculated DVKs with the activity biodistribution derived from clinical single-photon emission computed tomography (SPECT) or positron emission tomography (PET) images. Image registration for the SPECT or PET images with the corresponding computed tomography scans was performed before dosimetry calculation. The authors first compared the DVK convolution dosimetry with a direct full MC simulation on an XCAT anthropomorphic phantom. They then tested it in 25 individual clinical cases of patients who underwent 90Y therapy. All MC simulations were carried out using the GATE MC toolkit. Results: Comparison of the measured absorbed dose using tissue-specific DVKs and direct MC simulation on 25 patients revealed a mean difference of 1.07% ± 1.43% for the liver and 1.03% ± 1.21% for the tumor tissue, respectively. The largest difference between DVK convolution and full MC dosimetry was observed for the lung tissue (10.16% ± 1.20%). The DVK statistical uncertainty was <0.75% for both media. Conclusions: This semiautomatic algorithm is capable of performing rapid, accurate, and efficient 3D dosimetry. The proposed method considers tissue and activity heterogeneity using tissue-specific DVKs. Furthermore, this method provides results in <1 min, making it suitable for everyday clinical practice.


Asunto(s)
Embolización Terapéutica , Neoplasias Hepáticas/radioterapia , Neoplasias Pulmonares/radioterapia , Microesferas , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Radioisótopos de Itrio/farmacología , Algoritmos , Precisión de la Medición Dimensional , Relación Dosis-Respuesta en la Radiación , Embolización Terapéutica/instrumentación , Embolización Terapéutica/métodos , Humanos , Imagenología Tridimensional , Método de Montecarlo , Datación Radiométrica , Radiofármacos/farmacología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...