Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 58(13): 7762-9, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20545343

RESUMEN

Water-in-oil-in-water (W/O/W) double emulsions were prepared, and the kinetics of release of magnesium ions from the internal to the external water phase was followed. Different chelating agents (phosvitin and gluconate) were used to bind magnesium within the prospect of improving the ion retention in the internal aqueous droplets. Magnesium release was monitored for 1 month of storage, for each formulation, with and without chelation, at two storage temperatures (4 and 25 degrees C). Leakage occurred without film rupturing (coalescence) and was mainly due to entropically driven diffusion/permeation phenomena. The experimental results revealed a clear correlation between the effectiveness of chelating agents to delay the delivery and their binding capacity characterized by the equilibrium affinity constant. The kinetic data (percent released versus time curves) were interpreted within the framework of a kinetic model based on diffusion and taking into account magnesium chelation.


Asunto(s)
Emulsiones/química , Magnesio/química , Aceites/química , Agua/química , Quelantes/química , Difusión , Iones/química , Cinética
2.
Langmuir ; 26(12): 9250-60, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20297776

RESUMEN

Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.


Asunto(s)
Caseínas/química , Emulsiones/química , Magnesio/química , Difusión , Cinética , Permeabilidad , Unión Proteica
3.
Colloids Surf B Biointerfaces ; 78(1): 44-52, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20207114

RESUMEN

Water-in-oil-in-water (W/O/W) double emulsions were prepared and the kinetics of release of magnesium ions from the internal to the external water phase was investigated as a function of the formulation and the globule volume fraction. All the emulsions were formulated using the same surface-active species (polyglycerol polyricinoleate and sodium caseinate). Also, the internal droplet and oil globule diameters were almost identical for all the systems. Two types of W/O/W emulsions were prepared based either on a synthetic oil (miglyol) or on an edible oil (olive oil). The globule volume fraction varied from 11% to 72%. At constant temperature (T=25 degrees C) and irrespective of the oil type, the percentage of magnesium released was lowered by increasing the globule fraction. In all cases, magnesium leakage occurred without film rupturing (no coalescence). Thus, the experimental data were interpreted within the frame of a model based on diffusion. The rate of release was determined by the permeation coefficient of magnesium across the oil phase and by the binding (chelation) of magnesium by caseinate molecules. The data could be adequately fitted by considering a time-dependant permeation coefficient. The better retention of magnesium at high globule fractions could account for two distinct phenomena: (i) the reduction of the relative volume of the outer phase, and (ii) the attenuation of the permeation coefficient over time induced by interfacial magnesium binding, all the more important than the globule fraction increased.


Asunto(s)
Magnesio/química , Aceites/química , Agua/química , Emulsiones , Iones , Ligandos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...