Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922329

RESUMEN

Electron-assisted oxidation of Co-Si-based focused electron beam induced deposition (FEBID) materials is shown to form a 2-4 nm metal oxide surface layer on top of an electrically insulating silicon oxide layer less than 10 nm thick. Differences between thermal and electron-induced oxidation on the resulting microstructure are illustrated.

2.
Nanomaterials (Basel) ; 13(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37947751

RESUMEN

Electron-induced fragmentation of the HFeCo3(CO)12 precursor allows direct-write fabrication of 3D nanostructures with metallic contents of up to >95 at %. While microstructure and composition determine the physical and functional properties of focused electron beam-induced deposits, they also provide fundamental insights into the decomposition process of precursors, as elaborated in this study based on EDX and TEM. The results provide solid information suggesting that different dominant fragmentation channels are active in single-spot growth processes for pillar formation. The use of the single source precursor provides a unique insight into high- and low-energy fragmentation channels being active in the same deposit formation process.

3.
Nanomaterials (Basel) ; 13(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37764614

RESUMEN

Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.

4.
Nano Lett ; 23(10): 4344-4350, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167540

RESUMEN

One of the challenges of nanoelectromechanical systems (NEMS) is the effective transduction of the tiny resonators. Vertical structures, such as nanomechanical pillar resonators, which are exploited in optomechanics, acoustic metamaterials, and nanomechanical sensing, are particularly challenging to transduce. Existing electromechanical transduction methods are ill-suited as they put constraints on the pillars' material and do not enable a transduction of freestanding pillars. Here, we present an electromechanical transduction method for single nanomechanical pillar resonators based on surface acoustic waves (SAWs). We demonstrate the transduction of freestanding nanomechanical platinum-carbon pillars in the first-order bending and compression mode. Since the principle of the transduction method is based on resonant scattering of a SAW by a nanomechanical resonator, our transduction method is independent of the pillar's material and not limited to pillar-shaped geometries. It represents a general method to transduce vertical mechanical resonators with nanoscale lateral dimensions.

5.
Nanomaterials (Basel) ; 13(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049311

RESUMEN

Magnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCo3Fe(CO)12 precursor. The study first identifies a proper 3D design, confines the most relevant process parameters by means of primary electron energy and beam currents, and evaluates post-growth procedures as well. That way, highly crystalline nano-tips with minimal surface contamination and apex radii in the sub-15 nm regime are fabricated and benchmarked against commercial products. The results not only reveal a very high performance during MFM operation but in particular demonstrate virtually loss-free behavior after almost 8 h of continuous operation, thanks to the all-metal character. Even after more than 12 months of storage in ambient conditions, no performance loss is observed, which underlines the high overall performance of the here-introduced FEBID-based Co3Fe MFM nano-probes.

6.
ACS Omega ; 8(3): 3148-3175, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36713724

RESUMEN

3D nanoprinting, using focused electron beam-induced deposition, is prone to a common structural artifact arising from a temperature gradient that naturally evolves during deposition, extending from the electron beam impact region (BIR) to the substrate. Inelastic electron energy loss drives the Joule heating and surface temperature variations lead to precursor surface concentration variations due, in most part, to temperature-dependent precursor surface desorption. The result is unwanted curvature when prescribing linear segments in 3D objects, and thus, complex geometries contain distortions. Here, an electron dose compensation strategy is presented to offset deleterious heating effects; the Decelerating Beam Exposure Algorithm, or DBEA, which corrects for nanowire bending a priori, during computer-aided design, uses an analytical solution derived from information gleaned from 3D nanoprinting simulations. Electron dose modulation is an ideal solution for artifact correction because variations in electron dose have no influence on temperature. Thus, the generalized compensation strategy revealed here will help advance 3D nanoscale printing fidelity for focused electron beam-induced deposition.

7.
J Microsc ; 289(2): 80-90, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36263621

RESUMEN

Wood-based materials such as composites or laminates play an important role in today's furniture industry, especially in manufacturing high-quality kitchen and dining room furniture. One important aspect after fabrication is the investigation of these materials to derive quality metrics such as surface stain and scuff resistance. Current sample preparation methods are mostly straightforward and rely on cutting and grinding the materials under test, including sensitive wood substrates. To investigate cross-sections and different layer topologies, characterisation techniques such as atomic force microscopy (AFM) and infrared (IR) microscopy are of potential interest. However, a huge limitation is that current sample preparation methods lead to smeared coatings on the sample cross-sections and high surface roughness. Hence, these methods are not applicable for the sample preparation in measuring AFM and IR microscopy. Therefore, new preparation techniques need to be developed accordingly. This article presents a new approach towards coated wood-based sample preparation including embedding processes to use those samples for AFM and IR microscopy technologies. The proposed method has been evaluated by obtaining AFM, IR and microscopy measurements of more than four different wood-based samples such as (i) raw paper, (ii) impregnated paper, (iii) melamine-coated chipboards and (iv) medium-density fibreboards. The investigation results showed a significant improvement in sample preparation, as well as clear chemical and physical characterisation over whole sample construction, including coating layers, for wood-based materials.


Asunto(s)
Manejo de Especímenes , Madera , Microscopía de Fuerza Atómica/métodos , Manejo de Especímenes/métodos
8.
Nanomaterials (Basel) ; 12(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500873

RESUMEN

Focused electron beam induced deposition (FEBID) is one of the few additive, direct-write manufacturing techniques capable of depositing complex 3D nanostructures. In this work, we explore post-growth electron beam curing (EBC) of such platinum-based FEBID deposits, where free-standing, sheet-like elements were deformed in a targeted manner by local irradiation without precursor gas present. This process diminishes the volumes of exposed regions and alters nano-grain sizes, which was comprehensively characterized by SEM, TEM and AFM and complemented by Monte Carlo simulations. For obtaining controlled and reproducible conditions for smooth, stable morphological bending, a wide range of parameters were varied, which will here be presented as a first step towards using local EBC as a tool to realize even more complex nano-architectures, beyond current 3D-FEBID capabilities, such as overhanging structures. We thereby open up a new prospect for future applications in research and development that could even be further developed towards functional imprinting.

9.
Nanomaterials (Basel) ; 12(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36558331

RESUMEN

3D nanoprinting via focused electron beam induced deposition (FEBID) is applied for fabrication of all-metal nanoprobes for atomic force microscopy (AFM)-based electrical operation modes. The 3D tip concept is based on a hollow-cone (HC) design, with all-metal material properties and apex radii in the sub-10 nm regime to allow for high-resolution imaging during morphological imaging, conductive AFM (CAFM) and electrostatic force microscopy (EFM). The study starts with design aspects to motivate the proposed HC architecture, followed by detailed fabrication characterization to identify and optimize FEBID process parameters. To arrive at desired material properties, e-beam assisted purification in low-pressure water atmospheres was applied at room temperature, which enabled the removal of carbon impurities from as-deposited structures. The microstructure of final HCs was analyzed via scanning transmission electron microscopy-high-angle annular dark field (STEM-HAADF), whereas electrical and mechanical properties were investigated in situ using micromanipulators. Finally, AFM/EFM/CAFM measurements were performed in comparison to non-functional, high-resolution tips and commercially available electric probes. In essence, we demonstrate that the proposed all-metal HCs provide the resolution capabilities of the former, with the electric conductivity of the latter onboard, combining both assets in one design.

10.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35407228

RESUMEN

The material composition and electrical properties of nanostructures obtained from focused electron beam-induced deposition (FEBID) using manganese and vanadium carbonyl precursors have been investigated. The composition of the FEBID deposits has been compared with thin films derived by the thermal decomposition of the same precursors in chemical vapor deposition (CVD). FEBID of V(CO)6 gives access to a material with a V/C ratio of 0.63-0.86, while in CVD a lower carbon content with V/C ratios of 1.1-1.3 is obtained. Microstructural characterization reveals for V-based materials derived from both deposition techniques crystallites of a cubic phase that can be associated with VC1-xOx. In addition, the electrical transport measurements of direct-write VC1-xOx show moderate resistivity values of 0.8-1.2 × 103 µΩ·cm, a negligible influence of contact resistances and signatures of a granular metal in the temperature-dependent conductivity. Mn-based deposits obtained from Mn2(CO)10 contain ~40 at% Mn for FEBID and a slightly higher metal percentage for CVD. Exclusively insulating material has been observed in FEBID deposits as deduced from electrical conductivity measurements. In addition, strong tendencies for postgrowth oxidation have to be considered.

11.
Biomacromolecules ; 23(3): 1148-1157, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35225593

RESUMEN

Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.


Asunto(s)
Celulosa , Agua , Celulosa/química , Humedad , Microscopía de Fuerza Atómica , Tecnicas de Microbalanza del Cristal de Cuarzo , Agua/química
12.
Nanomaterials (Basel) ; 11(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207654

RESUMEN

High-fidelity 3D printing of nanoscale objects is an increasing relevant but challenging task. Among the few fabrication techniques, focused electron beam induced deposition (FEBID) has demonstrated its high potential due to its direct-write character, nanoscale capabilities in 3D space and a very high design flexibility. A limitation, however, is the low fabrication speed, which often restricts 3D-FEBID for the fabrication of single objects. In this study, we approach that challenge by reducing the substrate temperatures with a homemade Peltier stage and investigate the effects on Pt based 3D deposits in a temperature range of 5-30 °C. The findings reveal a volume growth rate boost up to a factor of 5.6, while the shape fidelity in 3D space is maintained. From a materials point of view, the internal nanogranular composition is practically unaffected down to 10 °C, followed by a slight grain size increase for even lower temperatures. The study is complemented by a comprehensive discussion about the growth mechanism for a more general picture. The combined findings demonstrate that FEBID on low substrate temperatures is not only much faster, but practically free of drawbacks during high fidelity 3D nanofabrication.

13.
Life (Basel) ; 11(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073841

RESUMEN

Hallux rigidus is degenerative arthritis of the first metatarsophalangeal joint characterized by pain and stiffness in the joint with limitation of motion and functional impairment. Recently, bone grafts have been introduced in orthopedic procedures, namely osteosynthesis and arthrodesis. Allografts can induce bone formation, provide support for vascular and bone ingrowth and have a low risk of immunological rejection. A 52-year-old female patient with hallux rigidus underwent arthrodesis of the first metatarsophalangeal joint using Shark Screw® made of allogenic cortical bone. Corrective surgery was performed after 10 weeks, and a 5 × 3 mm large part of the Shark Screw® with the surrounding patient's bone was removed. A histological evaluation revealed a vascularized graft with the newly formed compact lamellar bone fitting exactly to the cortical graft. The bone surface was lined by plump osteoblasts with osteoid production, and osteocytes were present in the lacunae. The arthrodesis of the first metatarsophalangeal joint using an allogenic cortical bone graft results in fast, primary bone healing without immunological rejection. This case suggests that the cortical allograft is a good and safe treatment option with an excellent graft incorporation into the host bone. However, as the literature evaluating the histology of different bone grafts is scarce, further high-level evidence studies with adequate sample sizes are needed to confirm our findings.

14.
Micromachines (Basel) ; 12(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499214

RESUMEN

Additive, direct-write manufacturing via a focused electron beam has evolved into a reliable 3D nanoprinting technology in recent years. Aside from low demands on substrate materials and surface morphologies, this technology allows the fabrication of freestanding, 3D architectures with feature sizes down to the sub-20 nm range. While indispensably needed for some concepts (e.g., 3D nano-plasmonics), the final applications can also be limited due to low mechanical rigidity, and thermal- or electric conductivities. To optimize these properties, without changing the overall 3D architecture, a controlled method for tuning individual branch diameters is desirable. Following this motivation, here, we introduce on-purpose beam blurring for controlled upward scaling and study the behavior at different inclination angles. The study reveals a massive boost in growth efficiencies up to a factor of five and the strong delay of unwanted proximal growth. In doing so, this work expands the design flexibility of this technology.

15.
ACS Appl Mater Interfaces ; 13(1): 1178-1191, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33372522

RESUMEN

The direct-write fabrication of freestanding nanoantennas for plasmonic applications is a challenging task, as demands for overall morphologies, nanoscale features, and material qualities are very high. Within the small pool of capable technologies, three-dimensional (3D) nanoprinting via focused electron beam-induced deposition (FEBID) is a promising candidate due to its design flexibility. As FEBID materials notoriously suffer from high carbon contents, the chemical postgrowth transfer into pure metals is indispensably needed, which can severely harm or even destroy FEBID-based 3D nanoarchitectures. Following this challenge, we first dissect FEBID growth characteristics and then combine individual advantages by an advanced patterning approach. This allows the direct-write fabrication of high-fidelity shapes with nanoscale features in the sub-10 nm range, which allow a shape-stable chemical transfer into plasmonically active Au nanoantennas. The here-introduced strategy is a generic approach toward more complex 3D architectures for future applications in the field of 3D plasmonics.

16.
PLoS One ; 15(10): e0240541, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33035271

RESUMEN

BACKGROUND: Ethyl pyruvate (EP), the ethyl ester of pyruvate, has proven antiinflammatory and antioxidative properties. Additionally, anticoagulant properties have been suggested recently. EP, therefore, is a potentially antiatherosclerotic drug. We aimed to investigate whether EP possesses antiplatelet and anticoagulant properties particularly in the physiological environment of whole blood. METHODS: We investigated the effects of increasing concentrations of EP on platelet function, on the course of clot development, and on standard coagulation times. Additionally, clot ultrastructure using scanning electron microscopy was analysed. RESULTS: EP exerted significant antiplatelet actions: i) Impedance aggregometry amplitudes (11.7 ± 3.0 ohm, 0 µg/mL EP) dose dependently decreased (7.8 ± 3.1 ohm, 1000 µg/mL EP; -33.3%). ATP exocytosis (0.87 ± 0.24 nM, 0 µg/mL EP) measured by the luminiscent method dose-dependently decreased (0.56 ± 0.14 nM, 1000 µg/mL; -35.6%). ii) Closure times (104.4 ± 23.8 s, 0 µg/mL EP) using the Platelet function analyzer were dose-dependently prolonged (180.5 ± 82.5 s, 1000 µg/mL EP; +72.9%) using membranes coated with collagen/ADP. iii) Surface coverage (15.9 ± 5.1%, 0 µg/mL EP) dose-dependently decreased (9.0 ± 3.7%, 1000 µg/mL EP; -43.4%) using the Cone and Platelet analyzer. EP also exerted significant anticoagulant actions: Coagulation times (177.9 ± 37.8, 0 µg/mL EP) evaluated by means of thrombelastometry were dose-dependently prolonged (212.8 ± 57.7 s, 1000 µg/mL EP; +19.6%). Activated partial thromboplastin times (31.5 ± 1.8 s, 0 µg/mL EP) were dose-dependently prolonged (35.6 ± 2.3 s, 1000 µg/mL EP; +13.0%). Prothrombin times (0.94 ± 0.02 INR, 0 µg/mL EP) were dose-dependently prolonged (1.09 ± 0.04 INR, 1000 µg/mL EP; +16.0%). CONCLUSION: We found that EP possesses antiplatelet and anticoagulant properties in whole blood. Together with its proven anti-inflammatory and antioxidative properties, EP is a potentially antiatherogenic drug.


Asunto(s)
Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Piruvatos/farmacología , Adulto , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad
17.
ACS Cent Sci ; 6(5): 739-746, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32490190

RESUMEN

The cellulosome is a supramolecular multienzymatic protein complex that functions as a biological nanomachine of cellulosic biomass degradation. How the megadalton-size cellulosome adapts to a solid substrate is central to its mechanism of action and is also key for its efficient use in bioconversion applications. We report time-lapse visualization of crystalline cellulose degradation by individual cellulosomes from Clostridium thermocellum by atomic force microscopy. Upon binding to cellulose, the cellulosomes switch to elongated, even filamentous shapes and morph these dynamically at below 1 min time scale according to requirements of the substrate surface under attack. Compared with noncomplexed cellulases that peel off material while sliding along crystalline cellulose surfaces, the cellulosomes remain bound locally for minutes and remove the material lying underneath. The consequent roughening up of the surface leads to an efficient deconstruction of cellulose nanocrystals both from the ends and through fissions within. Distinct modes of cellulose nanocrystal deconstruction by nature's major cellulase systems are thus revealed.

18.
Micromachines (Basel) ; 11(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290292

RESUMEN

This article reviews the state-of-the -art of mechanical material properties and measurement methods of nanostructures obtained by two nanoscale additive manufacturing methods: gas-assisted focused electron and focused ion beam-induced deposition using volatile organic and organometallic precursors. Gas-assisted focused electron and ion beam-induced deposition-based additive manufacturing technologies enable the direct-write fabrication of complex 3D nanostructures with feature dimensions below 50 nm, pore-free and nanometer-smooth high-fidelity surfaces, and an increasing flexibility in choice of materials via novel precursors. We discuss the principles, possibilities, and literature proven examples related to the mechanical properties of such 3D nanoobjects. Most materials fabricated via these approaches reveal a metal matrix composition with metallic nanograins embedded in a carbonaceous matrix. By that, specific material functionalities, such as magnetic, electrical, or optical can be largely independently tuned with respect to mechanical properties governed mostly by the matrix. The carbonaceous matrix can be precisely tuned via electron and/or ion beam irradiation with respect to the carbon network, carbon hybridization, and volatile element content and thus take mechanical properties ranging from polymeric-like over amorphous-like toward diamond-like behavior. Such metal matrix nanostructures open up entirely new applications, which exploit their full potential in combination with the unique 3D additive manufacturing capabilities at the nanoscale.

19.
Eur J Pharm Sci ; 147: 105278, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32135269

RESUMEN

The present study investigates the drug release-governing microstructural properties of melt spray congealed microspheres encapsulating the drug crystals in the matrix of glyceryl behenate and poloxamer (pore former). The solid-state, morphology, and micromeritics of the microspheres were characterized, before and after annealing, using calorimetry, X-ray scattering, porosimetry, scanning electron microscopy, and, NMR diffusometry. The in vitro drug release from and water uptake by the microspheres were obtained. The extent and the rate of drug release from the microspheres increased with a high poloxamer content and at higher annealing temperature and RH. All the drug release profiles were describable using the Higuchi release kinetics pointing towards the diffusion controlled release, both before and after annealing. The annealing process led to the polymorphic conversion of lipid and the increase in the pore size, predominantly at a higher temperature and humidity and for a high poloxamer content. The poloxamer domain increased from an initial 300 nm, up to 2000 nm upon annealing. The water diffusion rate inside the annealed microsphere was twice as fast as for unannealed counterparts. The findings relate the overall phase and pore structure change of the microsphere to the increased drug release induced by annealing. This work serves as a basis for the rational understanding of the modification of the in vitro performance by annealing, a widely used post-process for solid lipid products.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Química Física , Liberación de Fármacos , Técnicas In Vitro , Lípidos , Microesferas , Tamaño de la Partícula , Poloxámero/química , Tensoactivos , Temperatura
20.
Micromachines (Basel) ; 11(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861480

RESUMEN

A promising 3D nanoprinting method, used to deposit nanoscale mesh style objects, is prone to non-linear distortions which limits the complexity and variety of deposit geometries. The method, focused electron beam-induced deposition (FEBID), uses a nanoscale electron probe for continuous dissociation of surface adsorbed precursor molecules which drives highly localized deposition. Three dimensional objects are deposited using a 2D digital scanning pattern-the digital beam speed controls deposition into the third, or out-of-plane dimension. Multiple computer-aided design (CAD) programs exist for FEBID mesh object definition but rely on the definition of nodes and interconnecting linear nanowires. Thus, a method is needed to prevent non-linear/bending nanowires for accurate geometric synthesis. An analytical model is derived based on simulation results, calibrated using real experiments, to ensure linear nanowire deposition to compensate for implicit beam heating that takes place during FEBID. The model subsequently compensates and informs the exposure file containing the pixel-by-pixel scanning instructions, ensuring nanowire linearity by appropriately adjusting the patterning beam speeds. The derivation of the model is presented, based on a critical mass balance revealed by simulations and the strategy used to integrate the physics-based analytical model into an existing 3D nanoprinting CAD program is overviewed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...