Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Adipocyte ; 13(1): 2395565, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39248109

RESUMEN

BACKGROUND: Obesity increases the risk of atrial fibrillation (AF). We hypothesize that 'obese' epicardial adipose tissue (EAT) is, regardless of comorbidities, associated with markers of AF vulnerability. METHODS: Patients >40y of age undergoing bariatric surgery and using <2 antihypertensive drugs and no insulin were prospectively included. Study investigations were conducted before and 1y after surgery. Heart rhythm and p-wave duration were measured through ECGs and 7-d-holters. EAT-volume and attenuation were determined on non-enhanced CT scans. Serum markers were quantified by ELISA. RESULTS: Thirty-seven patients underwent surgery (age: 52.1 ± 5.9y; 27 women; no AF). Increased p-wave duration correlated with higher BMI, larger EAT volumes, and lower EAT attenuations (p < 0.05). Post-surgery, p-wave duration decreased from 109 ± 11 to 102 ± 11ms. Concurrently, EAT volume decreased from 132 ± 49 to 87 ± 52ml, BMI from 43.2 ± 5.2 to 28.9 ± 4.6kg/m2, and EAT attenuation increased from -76.1 ± 4.0 to -71.7 ± 4.4HU (p <0.001). Adiponectin increased from 8.7 ± 0.8 to 14.2 ± 1.0 µg/ml (p <0.001). However, decreased p-wave durations were not related to changed EAT characteristics, BMI or adiponectin. CONCLUSION: In this explorative study, longer p-wave durations related to higher BMIs, larger EAT volume, and lower EAT attenuations. P-wave duration and EAT volume decreased, and EAT attenuation increased upon drastic weightloss. However, there was no relation between decreased p-wave duration and changed BMI or EAT characteristics.


Asunto(s)
Tejido Adiposo , Fibrilación Atrial , Pericardio , Pérdida de Peso , Humanos , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Femenino , Persona de Mediana Edad , Masculino , Tejido Adiposo/metabolismo , Pericardio/metabolismo , Pericardio/patología , Obesidad/metabolismo , Estudios Prospectivos , Adiponectina/metabolismo , Adiponectina/sangre , Cirugía Bariátrica , Índice de Masa Corporal , Tejido Adiposo Epicárdico
2.
Heart Rhythm O2 ; 5(8): 561-572, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39263615

RESUMEN

Ventricular tachycardia (VT) is a life-threatening heart rhythm and has long posed a complex challenge in the field of cardiology. Recent developments in advanced imaging modalities have aimed to improve comprehension of underlying arrhythmic substrate for VT. To this extent, high-resolution cardiac magnetic resonance (CMR) and cardiac computed tomography (CCT) have emerged as tools for accurately visualizing and characterizing scar tissue, fibrosis, and other critical structural abnormalities within the heart, providing novel insights into VT triggers and substrate. However, clinical implementation of knowledge derived from these advanced imaging techniques in improving VT treatment and guiding invasive therapeutic strategies continues to pose significant challenges. A pivotal concern lies in the absence of standardized imaging protocols and analysis methodologies, resulting in a large variance in data quality and consistency. Furthermore, the clinical significance and outcomes associated with VT substrate characterization through CMR and CCT remain dynamic and subject to ongoing evolution. This highlights the need for refinement of these techniques before their reliable integration into routine patient care can be realized. The primary objectives of this study are twofold: firstly, to provide a comprehensive overview of the studies conducted over the last 15 years, summarizing the current available literature on imaging-based assessment of VT substrate. Secondly, to critically analyze and evaluate the selected studies, with the aim of providing valuable insights that can inform current clinical practice and future research.

3.
J Am Heart Assoc ; 13(17): e034106, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190561

RESUMEN

BACKGROUND: Left atrial appendage (LAA) slow-flow may increase the risk of ischemic stroke. We studied LAA attenuation on cardiac computed tomography in patients with acute ischemic stroke. METHODS AND RESULTS: We used data from a prospective cohort of patients with acute ischemic stroke undergoing cardiac computed tomography during the acute stroke imaging protocol. We compared characteristics, functional outcome (modified Rankin scale: higher scores indicating worse outcome), stroke recurrence and major adverse cardiovascular events after 2-year follow-up between patients with LAA thrombus (filling defect<100 Hounsfield Unit (HU)), slow-flow (filling defect ≥100 HU) and normal filling. Of 421 patients, 31 (7%) had LAA thrombus, 69 (16%) slow-flow, and 321 (76%) normal filling. Patients with thrombus or slow-flow more often had known atrial fibrillation compared with normal filling (45%, 39%, and 9%, P<0.001). Patients with thrombus had higher National Institutes of Health Stroke Scale-scores compared with slow-flow and normal filling (18 [interquartile range, 9-22], 6 [interquartile range, 3-17], and 5 [interquartile range, 2-11], P<0.001). Compared with normal filling, there was no difference with slow-flow in functional outcome (median modified Rankin scale, 3 versus 2; acOR 0.8 [95% CI, 0.5-1.4]), stroke recurrence (adjusted hazard ratio, 0.8 [95% CI, 0.3-1.9]) or major adverse cardiovascular events (adjusted hazard ratio, 1.2 [95% CI, 0.7-2.1]), while patients with thrombus had worse functional outcome (median modified Rankin scale, 6, acOR, 3.3 [95% CI, 1.5-7.4]). In cryptogenic stroke patients (n=156) slow-flow was associated with stroke recurrence (27% versus 6%, aHR, 4.1 [95% CI, 1.1-15.7]). CONCLUSIONS: Patients with slow-flow had similar characteristics to patients with thrombus, but had less severe strokes. Slow-flow was not significantly associated with functional outcome or major adverse cardiovascular events, but was associated with recurrent stroke in patients with cryptogenic stroke.


Asunto(s)
Apéndice Atrial , Accidente Cerebrovascular Isquémico , Humanos , Apéndice Atrial/diagnóstico por imagen , Apéndice Atrial/fisiopatología , Masculino , Femenino , Anciano , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/etiología , Persona de Mediana Edad , Estudios Prospectivos , Recurrencia , Anciano de 80 o más Años , Factores de Riesgo , Trombosis/diagnóstico por imagen , Trombosis/etiología , Trombosis/fisiopatología , Tomografía Computarizada por Rayos X , Fibrilación Atrial/complicaciones , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/diagnóstico por imagen , Factores de Tiempo , Valor Predictivo de las Pruebas
4.
Artículo en Inglés | MEDLINE | ID: mdl-39163147

RESUMEN

AIMS: To investigate the location-specific prognostic significance of plaque burden, diameter stenosis and plaque morphology. METHODS AND RESULTS: Patients without a documented cardiac history who underwent coronary computed tomography angiography (CCTA) for suspected coronary artery disease were included. Percentage atheroma volume (PAV), maximum diameter stenosis, and plaque morphology were assessed and classified into proximal, mid, or distal segments of the coronary tree. Major adverse cardiac events (MACE) were defined as death or non-fatal myocardial infarction. Among 2819 patients 267 events (9.5%) occurred during a median follow-up of 6.9 years. When adjusted for traditional risk factors and presence of PAV on other locations, only proximal PAV was independently associated with MACE. However, PAV of the proximal segments was strongly correlated to PAV localized at the mid (R= 0.76) and distal segments (R=0.74, p<0.01 for both). When only adjusted for cardiovascular risk factors, the area under the curve (AUC) to predict MACE for proximal PAV was 0.73 (95%CI 0.69-0.76), which was similar compared to mid PAV (AUC 0.72, 95%CI 0.68-0.76) and distal PAV (AUC 0.72, 95%CI 0.68-0.76). Similar results were obtained using diameter stenosis instead of PAV. The presence of proximal low-attenuation plaque had borderline additional prognostic value. CONCLUSIONS: Proximal PAV was the strongest predictor of MACE when adjusted for cardiovascular risk factors and plaque at other locations. However, when presence of plaque was only adjusted for cardiovascular risk factors, proximal, mid, and distal plaque localization showed a similar predictive ability for MACE.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39152960

RESUMEN

BACKGROUND: The longitudinal relation between coronary artery disease (CAD) polygenic risk score (PRS) and long-term plaque progression and high-risk plaque (HRP) features is unknown. OBJECTIVES: The goal of this study was to investigate the impact of CAD PRS on long-term coronary plaque progression and HRP. METHODS: Patients underwent CAD PRS measurement and prospective serial coronary computed tomography angiography (CTA) imaging. Coronary CTA scans were analyzed with a previously validated artificial intelligence-based algorithm (atherosclerosis imaging-quantitative computed tomography imaging). The relationship between CAD PRS and change in percent atheroma volume (PAV), percent noncalcified plaque progression, and HRP prevalence was investigated in linear mixed-effect models adjusted for baseline plaque volume and conventional risk factors. RESULTS: A total of 288 subjects (mean age 58 ± 7 years; 60% male) were included in this study with a median scan interval of 10.2 years. At baseline, patients with a high CAD PRS had a more than 5-fold higher PAV than those with a low CAD PRS (10.4% vs 1.9%; P < 0.001). Per 10 years of follow-up, a 1 SD increase in CAD PRS was associated with a 0.69% increase in PAV progression in the multivariable adjusted model. CAD PRS provided additional discriminatory benefit for above-median noncalcified plaque progression during follow-up when added to a model with conventional risk factors (AUC: 0.73 vs 0.69; P = 0.039). Patients with high CAD PRS had an OR of 2.85 (95% CI: 1.14-7.14; P = 0.026) and 6.16 (95% CI: 2.55-14.91; P < 0.001) for having HRP at baseline and follow-up compared with those with low CAD PRS. CONCLUSIONS: Polygenic risk is strongly associated with future long-term plaque progression and HRP in patients suspected of having CAD.

6.
J Magn Reson Imaging ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166882

RESUMEN

Whole-heart 4D-flow MRI is a valuable tool for advanced visualization and quantification of blood flow in cardiovascular imaging. Despite advantages over 2D-phase-contrast flow, clinical implementation remains only partially exploited due to many hurdles in all steps, from image acquisition, reconstruction, postprocessing and analysis, clinical embedment, reporting, legislation, and regulation to data storage. The intent of this manuscript was 1) to evaluate the extent of clinical implementation of whole-heart 4D-flow MRI, 2) to identify hurdles hampering clinical implementation, and 3) to reach consensus on requirements for clinical implementation of whole-heart 4D-flow MRI. This study is based on Delphi analysis. This study involves a panel of 18 experts in the field on whole-heart 4D-flow MRI. The experience with and opinions of experts (mean 13 years of experience, interquartile range 6) in the field were aggregated. This study showed that among experts in the cardiovascular field, whole-heart 4D-flow MRI is currently used for both clinical and research purposes. Overall, the panelists agreed that major hurdles currently hamper implementation and utilization. The sequence-specific hurdles identified were long scan time and lack of standardization. Further hurdles included cumbersome and time-consuming segmentation and postprocessing. The study concludes that implementation of whole-heart 4D-flow MRI in clinical routine is feasible, but the implementation process is complex and requires a dedicated, multidisciplinary team. A predefined plan, including risk assessment and technique validation, is essential. The reported consensus statements may guide further tool development and facilitate broader implementation and clinical use. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 5.

7.
JAMA Cardiol ; 9(9): 826-834, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39018040

RESUMEN

Importance: Lipoprotein(a) (Lp[a]) is a causal risk factor for cardiovascular disease; however, long-term effects on coronary atherosclerotic plaque phenotype, high-risk plaque formation, and pericoronary adipose tissue inflammation remain unknown. Objective: To investigate the association of Lp(a) levels with long-term coronary artery plaque progression, high-risk plaque, and pericoronary adipose tissue inflammation. Design, Setting, and Participants: This single-center prospective cohort study included 299 patients with suspected coronary artery disease (CAD) who underwent per-protocol repeated coronary computed tomography angiography (CCTA) imaging with an interscan interval of 10 years. Thirty-two patients were excluded because of coronary artery bypass grafting, resulting in a study population of 267 patients. Data for this study were collected from October 2008 to October 2022 and analyzed from March 2023 to March 2024. Exposures: The median scan interval was 10.2 years. Lp(a) was measured at follow-up using an isoform-insensitive assay. CCTA scans were analyzed with a previously validated artificial intelligence-based algorithm (atherosclerosis imaging-quantitative computed tomography). Main Outcome and Measures: The association between Lp(a) and change in percent plaque volumes was investigated in linear mixed-effects models adjusted for clinical risk factors. Secondary outcomes were presence of low-density plaque and presence of increased pericoronary adipose tissue attenuation at baseline and follow-up CCTA imaging. Results: The 267 included patients had a mean age of 57.1 (SD, 7.3) years and 153 were male (57%). Patients with Lp(a) levels of 125 nmol/L or higher had twice as high percent atheroma volume (6.9% vs 3.0%; P = .01) compared with patients with Lp(a) levels less than 125 nmol/L. Adjusted for other risk factors, every doubling of Lp(a) resulted in an additional 0.32% (95% CI, 0.04-0.60) increment in percent atheroma volume during the 10 years of follow-up. Every doubling of Lp(a) resulted in an odds ratio of 1.23 (95% CI, 1.00-1.51) and 1.21 (95% CI, 1.01-1.45) for the presence of low-density plaque at baseline and follow-up, respectively. Patients with higher Lp(a) levels had increased pericoronary adipose tissue attenuation around both the right coronary artery and left anterior descending at baseline and follow-up. Conclusions and Relevance: In this long-term prospective serial CCTA imaging study, higher Lp(a) levels were associated with increased progression of coronary plaque burden and increased presence of low-density noncalcified plaque and pericoronary adipose tissue inflammation. These data suggest an impact of elevated Lp(a) levels on coronary atherogenesis of high-risk, inflammatory, rupture-prone plaques over the long term.


Asunto(s)
Tejido Adiposo , Angiografía por Tomografía Computarizada , Enfermedad de la Arteria Coronaria , Progresión de la Enfermedad , Lipoproteína(a) , Placa Aterosclerótica , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/patología , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Inflamación , Lipoproteína(a)/sangre , Placa Aterosclerótica/diagnóstico por imagen , Estudios Prospectivos , Factores de Riesgo
8.
Clin Nutr ESPEN ; 63: 142-147, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38944828

RESUMEN

BACKGROUND & AIMS: Accurate diagnosis of sarcopenia requires evaluation of muscle quality, which refers to the amount of fat infiltration in muscle tissue. In this study, we aim to investigate whether we can independently predict mortality risk in transcatheter aortic valve implantation (TAVI) patients, using automatic deep learning algorithms to assess muscle quality on procedural computed tomography (CT) scans. METHODS: This study included 1199 patients with severe aortic stenosis who underwent transcatheter aortic valve implantation (TAVI) between January 2010 and January 2020. A procedural CT scan was performed as part of the preprocedural-TAVI evaluation, and the scans were analyzed using deep-learning-based software to automatically determine skeletal muscle density (SMD) and intermuscular adipose tissue (IMAT). The association of SMD and IMAT with all-cause mortality was analyzed using a Cox regression model, adjusted for other known mortality predictors, including muscle mass. RESULTS: The mean age of the participants was 80 ± 7 years, 53% were female. The median observation time was 1084 days, and the overall mortality rate was 39%. We found that the lowest tertile of muscle quality, as determined by SMD, was associated with an increased risk of mortality (HR 1.40 [95%CI: 1.15-1.70], p < 0.01). Similarly, low muscle quality as defined by high IMAT in the lowest tertile was also associated with increased mortality risk (HR 1.24 [95%CI: 1.01-1.52], p = 0.04). CONCLUSIONS: Our findings suggest that deep learning-assessed low muscle quality, as indicated by fat infiltration in muscle tissue, is a practical, useful and independent predictor of mortality after TAVI.


Asunto(s)
Estenosis de la Válvula Aórtica , Aprendizaje Profundo , Músculo Esquelético , Sarcopenia , Tomografía Computarizada por Rayos X , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Femenino , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/mortalidad , Masculino , Anciano de 80 o más Años , Anciano , Sarcopenia/diagnóstico por imagen , Sarcopenia/mortalidad , Músculo Esquelético/diagnóstico por imagen , Tejido Adiposo/diagnóstico por imagen , Factores de Riesgo , Estudios Retrospectivos , Valor Predictivo de las Pruebas
10.
PLoS One ; 19(6): e0305189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870138

RESUMEN

OBJECTIVES: The aim of this early-stage Health Technology Assessment (HTA) was to assess the difference in healthcare costs and effects of fractional flow reserve derived from coronary computed tomography (FFRct) compared to standard diagnostics in patients with stable chest pain in The Netherlands. METHODS: A decision-tree model was developed to assess the difference in total costs from the hospital perspective, probability of correct diagnoses, and risk of major adverse cardiovascular events at one year follow-up. One-way sensitivity analyses were conducted to determine the main drivers of the cost difference between the strategies. A threshold analysis on the added price of FFRct analysis (computational analysis only) was conducted. RESULTS: The mean one-year costs were €2,680 per patient for FFRct and €2,915 per patient for standard diagnostics. The one-year probability of correct diagnoses was 0.78 and 0.61, and the probability of major adverse cardiovascular events was 1.92x10-5 and 0.01, respectively. The probability and costs of revascularization and the specificity of coronary computed tomography angiography had the greatest effect on the difference in costs between the strategies. The added price of FFRct analysis should be below €935 per patient to be considered the least costly option. CONCLUSIONS: The early-stage HTA findings suggest that FFRct may reduce total healthcare spending, probability of incorrect diagnoses, and major adverse cardiovascular events compared to current diagnostics for patients with stable chest pain in the Dutch healthcare setting over one year. Future cost-effectiveness studies should determine a value-based pricing for FFRct and quantify the economic value of the anticipated therapeutic impact.


Asunto(s)
Dolor en el Pecho , Reserva del Flujo Fraccional Miocárdico , Evaluación de la Tecnología Biomédica , Humanos , Países Bajos , Dolor en el Pecho/diagnóstico por imagen , Dolor en el Pecho/diagnóstico , Femenino , Masculino , Angiografía por Tomografía Computarizada/economía , Angiografía por Tomografía Computarizada/métodos , Persona de Mediana Edad , Angiografía Coronaria/economía , Angiografía Coronaria/métodos , Costos de la Atención en Salud , Análisis Costo-Beneficio , Tomografía Computarizada por Rayos X/economía , Tomografía Computarizada por Rayos X/métodos , Anciano , Árboles de Decisión
11.
Atherosclerosis ; 392: 117525, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598969

RESUMEN

Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is used for decades, lowering serum LDL-C levels by more than 70% directly after the treatment. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment goals and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.


Asunto(s)
Eliminación de Componentes Sanguíneos , Consenso , Homocigoto , Humanos , Eliminación de Componentes Sanguíneos/métodos , Niño , Resultado del Tratamiento , Lipoproteína(a)/sangre , LDL-Colesterol/sangre , Adolescente , Trasplante de Hígado , Biomarcadores/sangre , Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/terapia , Hiperlipoproteinemia Tipo I/sangre , Hiperlipoproteinemia Tipo I/genética , Fenotipo , Hiperlipoproteinemia Tipo II/terapia , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Preescolar , Lipoproteínas/sangre , Predisposición Genética a la Enfermedad
12.
J Am Heart Assoc ; 13(9): e033175, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38639349

RESUMEN

BACKGROUND: Cardiac computed tomography (CT) acquired during the initial acute stroke imaging protocol (acute cardiac CT) is increasingly used to screen for cardioembolism, but information on the long-term clinical implications of its findings is lacking. METHODS AND RESULTS: We performed a prospective, single-center cohort study in which consecutive patients with ischemic stroke underwent ECG-gated acute cardiac CT and were followed up for 2 years. The primary outcome was functional outcome assessed using the modified Rankin Scale. Secondary outcomes were death and occurrence of major adverse cardiovascular events (composite of recurrent ischemic stroke, myocardial infarction, and cardiovascular death). We compared patients with and without a high-risk structural source of embolism on acute cardiac CT. Of 452 included patients, 55 (12.2%) had a high-risk source of embolism, predominantly cardiac thrombi (38 patients) and signs of endocarditis (8 patients). Follow-up at 2 years was complete for 430 (95.1%) patients. Patients with a high-risk source of embolism had a worse functional outcome (median modified Rankin Scale, 6 [IQR, 2-6] versus 2 [IQR, 1-5]; adjusted common odds ratio, 2.92 [95% CI, 1.62-5.25]), increased mortality rate (52.7% versus 23.7%; adjusted hazard ratio [HR], 3.28 [95% CI, 1.94-5.52]), and major adverse cardiovascular events (38.9% versus 17.5%; adjusted HR, 3.20 [95% CI, 1.80-5.69]). A high-risk source of embolism was not associated with recurrent ischemic stroke (11.1% versus 9.6%; adjusted HR, 1.30 [95% CI, 0.49-3.44]). CONCLUSIONS: Structural high-risk sources of embolism on acute cardiac CT in patients with ischemic stroke were associated with poor long-term functional outcome and occurrence of major adverse cardiovascular events but not with recurrent stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Humanos , Masculino , Femenino , Anciano , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Accidente Cerebrovascular Isquémico/mortalidad , Estudios Prospectivos , Persona de Mediana Edad , Factores de Riesgo , Factores de Tiempo , Medición de Riesgo , Recurrencia , Tomografía Computarizada por Rayos X , Pronóstico , Anciano de 80 o más Años , Valor Predictivo de las Pruebas
13.
Cardiology ; 149(3): 255-263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325343

RESUMEN

INTRODUCTION: The optimal pre-participation screening strategy to identify athletes at risk for exercise-induced cardiovascular events is unknown. We therefore aimed to compare the American College of Sports Medicine (ACSM) and European Society of Cardiology (ESC) pre-participation screening strategies against extensive cardiovascular evaluations in identifying high-risk individuals among 35-50-year-old apparently healthy men. METHODS: We applied ACSM and ESC pre-participation screenings to 25 men participating in a study on first-time marathon running. We compared screening outcomes against medical history, physical examination, electrocardiography, blood tests, echocardiography, cardiopulmonary exercise testing, and magnetic resonance imaging. RESULTS: ACSM screening classified all participants as "medical clearance not necessary." ESC screening classified two participants as "high-risk." Extensive cardiovascular evaluations revealed ≥1 minor abnormality and/or cardiovascular condition in 17 participants, including three subjects with mitral regurgitation and one with a small atrial septal defect. Eleven participants had dyslipidaemia, six had hypertension, and two had premature atherosclerosis. Ultimately, three (12%) subjects had a serious cardiovascular condition warranting sports restrictions: aortic aneurysm, hypertrophic cardiomyopathy (HCM), and myocardial fibrosis post-myocarditis. Of these three participants, only one had been identified as "high-risk" by the ESC screening (for dyslipidaemia, not HCM) and none by the ACSM screening. CONCLUSION: Numerous occult cardiovascular conditions are missed when applying current ACSM/ESC screening strategies to apparently healthy middle-aged men engaging in their first high-intensity endurance sports event.


Asunto(s)
Enfermedades Cardiovasculares , Carrera de Maratón , Humanos , Masculino , Persona de Mediana Edad , Adulto , Enfermedades Cardiovasculares/diagnóstico , Prueba de Esfuerzo , Electrocardiografía , Ecocardiografía , Tamizaje Masivo/métodos , Examen Físico , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Imagen por Resonancia Magnética , Hipertensión/diagnóstico , Dislipidemias/diagnóstico , Diagnóstico Erróneo
14.
Atheroscler Plus ; 55: 1-4, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38188455

RESUMEN

Familial hypercholesterolemia (FH) is one of the most common genetically inherited disorders in the world. Children with severe heterozygous FH (HeFH), i.e. untreated low-density lipoprotein cholesterol (LDL-C) levels above the 90th percentile for age and sex among FH mutation carriers, can have LDL-C levels that overlap levels of children with homozygous FH (HoFH), but treatment regimen and cardiovascular follow-up to prevent cardiovascular disease are less intensive in children with severe HeFH. In children with HoFH, subclinical atherosclerosis can already be present using computed tomography coronary angiography (CTCA). The question remains whether this is also the case in children with severe HeFH who have a high exposure to elevated LDL-C levels from birth onwards as well. We calculated the cumulative LDL-C exposure (CEtotal [mmol]) in four children with severe HeFH and performed computed tomography coronary angiography (CTCA). These children, aged 13, 14, 15 and 18 years, had CEtotal of 71.3, 97.8, 103.6 and 136.1 mmol, respectively. None of them showed abnormalities on cardiovascular imaging, despite high LDL-C exposure. The results of this study, do not give us an indication to recommend performing CTCA routinely in children with severe HeFH.

15.
Eur J Prev Cardiol ; 31(7): 892-900, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38243822

RESUMEN

AIMS: Familial hypercholesterolaemia (FH) patients are subjected to a high lifetime exposure to low density lipoprotein cholesterol (LDL-C), despite use of lipid-lowering therapy (LLT). This study aimed to quantify the extent of subclinical atherosclerosis and to evaluate the association between lifetime cumulative LDL-C exposure and coronary atherosclerosis in young FH patients. METHODS AND RESULTS: Familial hypercholesterolaemia patients, divided into a subgroup of early treated (LLT initiated <25 years) and late treated (LLT initiated ≥25 years) patients, and an age- and sex-matched unaffected control group, underwent coronary CT angiography (CCTA) with artificial intelligence-guided analysis. Ninety genetically diagnosed FH patients and 45 unaffected volunteers (mean age 41 ± 3 years, 51 (38%) female) were included. Familial hypercholesterolaemia patients had higher cumulative LDL-C exposure (181 ± 54 vs. 105 ± 33 mmol/L ∗ years) and higher prevalence of coronary plaque compared with controls (46 [51%] vs. 10 [22%], OR 3.66 [95%CI 1.62-8.27]). Every 75 mmol/L ∗ years cumulative exposure to LDL-C was associated with a doubling in per cent atheroma volume (total plaque volume divided by total vessel volume). Early treated patients had a modestly lower cumulative LDL-C exposure compared with late treated FH patients (167 ± 41 vs. 194 ± 61 mmol/L ∗ years; P = 0.045), without significant difference in coronary atherosclerosis. Familial hypercholesterolaemia patients with above-median cumulative LDL-C exposure had significantly higher plaque prevalence (OR 3.62 [95%CI 1.62-8.27]; P = 0.001), compared with patients with below-median exposure. CONCLUSION: Lifetime exposure to LDL-C determines coronary plaque burden in FH, underlining the need of early as well as potent treatment initiation. Periodic CCTA may offer a unique opportunity to monitor coronary atherosclerosis and personalize treatment in FH.


This study reveals that young patients with familial hypercholesterolaemia (FH), as compared with individuals without FH, have a higher build-up of coronary artery plaque, linked directly to their increased lifetime exposure to LDL cholesterol. Genetically confirmed FH patients have a higher coronary plaque burden than those without FH, with every 75 mmol/L ∗ years increase in lifetime cumulative LDL cholesterol exposure resulting in a two-fold increase in total plaque volume. Early and potent LDL cholesterol lowering treatments are crucial for FH patients to prevent future cardiovascular diseases.


Asunto(s)
LDL-Colesterol , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Hiperlipoproteinemia Tipo II , Humanos , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Femenino , Masculino , LDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/prevención & control , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/sangre , Adulto , Biomarcadores/sangre , Factores de Tiempo , Prevalencia , Persona de Mediana Edad , Placa Aterosclerótica , Factores de Riesgo , Estudios de Casos y Controles , Resultado del Tratamiento , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico
16.
Heart ; 110(4): 254-262, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37678891

RESUMEN

OBJECTIVE: Longitudinal consequences and potential interactions of COVID-19 and elite-level sports and exercise are unclear. Therefore, we determined the long-term detrimental cardiac effects of the interaction between SARS-CoV-2 infection and the highest level of sports and exercise. METHODS: This prospective controlled study included elite athletes from the Evaluation of Lifetime participation in Intensive Top-level sports and Exercise cohort. Athletes infected with SARS-CoV-2were offered structured, additional cardiovascular screenings, including cardiovascular MRI (CMR). We compared ventricular volumes and function, late gadolinium enhancement (LGE) and T1 relaxation times, between infected and non-infected elite athletes, and collected follow-up data on cardiac adverse events, ventricular arrhythmia burden and the cessation of sports careers. RESULTS: We included 259 elite athletes (mean age 26±5 years; 40% women), of whom 123 were infected (9% cardiovascular symptoms) and 136 were controls. We found no differences in function and volumetric CMR parameters. Four infected athletes (3%) demonstrated LGE (one reversible), compared with none of the controls. During the 26.7 (±5.8) months follow-up, all four athletes resumed elite-level sports, without an increase in ventricular arrhythmias or adverse cardiac remodelling. None of the infected athletes reported new cardiac symptoms or events. The majority (n=118; 96%) still participated in elite-level sports; no sports careers were terminated due to SARS-CoV-2. CONCLUSIONS: This prospective study demonstrates the safety of resuming elite-level sports after SARS-CoV-2 infection. The medium-term risks associated with SARS-CoV-2 infection and elite-level sports appear low, as the resumption of elite sports did not lead to detrimental cardiac effects or increases in clinical events, even in the four elite athletes with SARS-CoV-2 associated myocardial involvement.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Adulto Joven , Adulto , Masculino , Estudios Prospectivos , Estudios de Seguimiento , Medios de Contraste , COVID-19/epidemiología , Gadolinio , Atletas , Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/etiología
17.
IEEE Trans Med Imaging ; 43(4): 1272-1283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37862273

RESUMEN

Coronary artery disease (CAD) remains the leading cause of death worldwide. Patients with suspected CAD undergo coronary CT angiography (CCTA) to evaluate the risk of cardiovascular events and determine the treatment. Clinical analysis of coronary arteries in CCTA comprises the identification of atherosclerotic plaque, as well as the grading of any coronary artery stenosis typically obtained through the CAD-Reporting and Data System (CAD-RADS). This requires analysis of the coronary lumen and plaque. While voxel-wise segmentation is a commonly used approach in various segmentation tasks, it does not guarantee topologically plausible shapes. To address this, in this work, we propose to directly infer surface meshes for coronary artery lumen and plaque based on a centerline prior and use it in the downstream task of CAD-RADS scoring. The method is developed and evaluated using a total of 2407 CCTA scans. Our method achieved lesion-wise volume intraclass correlation coefficients of 0.98, 0.79, and 0.85 for calcified, non-calcified, and total plaque volume respectively. Patient-level CAD-RADS categorization was evaluated on a representative hold-out test set of 300 scans, for which the achieved linearly weighted kappa ( κ ) was 0.75. CAD-RADS categorization on the set of 658 scans from another hospital and scanner led to a κ of 0.71. The results demonstrate that direct inference of coronary artery meshes for lumen and plaque is feasible, and allows for the automated prediction of routinely performed CAD-RADS categorization.


Asunto(s)
Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Humanos , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Placa Aterosclerótica/diagnóstico por imagen , Valor Predictivo de las Pruebas
18.
J Magn Reson Imaging ; 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006298

RESUMEN

BACKGROUND: Maximum diameter measurements are used to assess the rupture risk of abdominal aortic aneurysms (AAAs); however, these are not precise enough to predict all ruptures. Four-dimensional (4D) flow MRI-derived parameters provide additional information by visualizing hemodynamics in AAAs but merit further investigation before they are clinically applicable. PURPOSE: To assess the reproducibility of 4D flow MRI-derived hemodynamics, to investigate possible correlations with lumen and maximum diameter, and to explore potential relationships with vorticity and aneurysm growth. STUDY TYPE: Prospective single-arm study. POPULATION: A total of 22 (71.5 ± 6.1 years, 20 male) asymptomatic AAA patients with a maximum diameter of at least 30 mm. FIELD STRENGTH/SEQUENCE: A 3.0 T/Free-breathing 4D flow MRI phase-contrast acquisition with retrospective ECG-gating. ASSESSMENT: Patients underwent two consecutive 4D flow MRI scans 1-week apart. Aortic volumes were segmented from time-averaged phase contrast magnetic resonance angiographies. Reproducibility was assessed by voxelwise analysis after registration. Mean flow velocity, mean wall shear stress (WSS), mean lumen diameter, and qualitative vorticity scores were assessed. In addition, Dixon MRI and retrospective surveillance data were used to study maximum diameter (including thrombus), intraluminal thrombus volume (ILT), and growth rate. STATISTICAL TESTS: For reproducibility assessment, Bland-Altman analyses, Pearson correlation, Spearman's correlation, and orthogonal regression were conducted. Potential correlations between hemodynamics and vorticity scores were assessed using linear regression. P < 0.05 was considered statistically significant. RESULTS: Test-retest median Pearson correlation coefficients for flow velocity and WSS were 0.85 (IQR = 0.08) m/sec and 0.82 (IQR = 0.10) Pa, respectively. Mean WSS significantly correlated with mean flow velocity (R = 0.75) and inversely correlated with mean lumen diameter (R = -0.73). No significant associations were found between 4D flow MRI-derived hemodynamic parameters and maximum diameter (flow velocity: P = 0.98, WSS: P = 0.22). DATA CONCLUSION: A 4D flow MRI is robust for assessing the hemodynamics within AAAs. No correlations were found between hemodynamic parameters and maximum diameter, ILT volume and growth rate. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.

19.
medRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014132

RESUMEN

Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is well established since three decades, lowering serum LDL-C levels by more than 70% per session. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment targets and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.

20.
Eur J Nucl Med Mol Imaging ; 50(13): 3897-3909, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561140

RESUMEN

PURPOSE: We sought to assess the impact of coronary revascularization on myocardial perfusion and fractional flow reserve (FFR) in patients without a cardiac history, with prior myocardial infarction (MI) or non-MI percutaneous coronary intervention (PCI). Furthermore, we studied the impact of scar tissue. METHODS: Symptomatic patients underwent [15O]H2O positron emission tomography (PET) and FFR before and after revascularization. Patients with prior CAD, defined as prior MI or PCI, underwent scar quantification by magnetic resonance imaging late gadolinium enhancement. RESULTS: Among 137 patients (87% male, age 62.2 ± 9.5 years) 84 (61%) had a prior MI or PCI. The increase in FFR and hyperemic myocardial blood flow (hMBF) was less in patients with prior MI or non-MI PCI compared to those without a cardiac history (FFR: 0.23 ± 0.14 vs. 0.20 ± 0.12 vs. 0.31 ± 0.18, p = 0.02; hMBF: 0.54 ± 0.75 vs. 0.62 ± 0.97 vs. 0.91 ± 0.96 ml/min/g, p = 0.04). Post-revascularization FFR and hMBF were similar across patients without a cardiac history or with prior MI or non-MI PCI. An increase in FFR was strongly associated to hMBF increase in patients without a cardiac history or with prior MI/non-MI PCI (r = 0.60 and r = 0.60, p < 0.01 for both). Similar results were found for coronary flow reserve. In patients with prior MI scar was negatively correlated to hMBF increase and independently predictive of an attenuated CFR increase. CONCLUSIONS: Post revascularization FFR and perfusion were similar among patients without a cardiac history, with prior MI or non-MI PCI. In patients with prior MI scar burden was associated to an attenuated perfusion increase.


Asunto(s)
Enfermedad de la Arteria Coronaria , Reserva del Flujo Fraccional Miocárdico , Infarto del Miocardio , Intervención Coronaria Percutánea , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Intervención Coronaria Percutánea/efectos adversos , Intervención Coronaria Percutánea/métodos , Reserva del Flujo Fraccional Miocárdico/fisiología , Angiografía Coronaria/métodos , Cicatriz/diagnóstico por imagen , Medios de Contraste , Resultado del Tratamiento , Gadolinio , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...