Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (122)2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28447995

RESUMEN

Microglia are the primary responders to central nervous system insults; however, much remains unknown about their role in regulating neuroinflammation. Microglia are mesodermal cells that function similarly to macrophages in surveying inflammatory stress. The classical (M1-type) and alternative (M2-type) activations of macrophages have also been extended to microglia in an effort to better understand the underlying interplay these phenotypes have in neuroinflammatory conditions such as Parkinson's, Alzheimer's, and Huntington's Diseases. In vitro experimentation utilizing primary microglia offers rapid and reliable results that may be extended to the in vivo environment. Although this is a clear advantage over in vivo experimentation, isolating microglia while achieving adequate yields of optimal purity has been a challenge. Common methods currently in use either suffer from low recovery, low purity, or both. Herein, we demonstrate a refinement of the column-free CD11b magnetic separation method that achieves a high cell recovery and enhanced purity in half the amount of time. We propose this optimized method as a highly useful model of primary microglial isolation for the purposes of studying neuroinflammation and neurodegeneration.


Asunto(s)
Antígeno CD11b/química , Separación Celular/métodos , Microglía/fisiología , Recuento de Células , Humanos , Magnetismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...