Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Blood Cells Mol Dis ; 106: 102838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413287

RESUMEN

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia Diseritropoyética Congénita , Anemia Macrocítica , Humanos , Anemia de Diamond-Blackfan/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Células Precursoras Eritroides/metabolismo , Mutación
2.
Cancer Med ; 13(2): e6984, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38334477

RESUMEN

INTRODUCTION: Leukemogenesis is a complex process that interconnects tumoral cells with their microenvironment, but the effect of mechanosensing in acute myeloid leukemia (AML) blasts is poorly known. PIEZO1 perceives and transmits the constraints of the environment to human cells by acting as a non-selective calcium channel, but very little is known about its role in leukemogenesis. RESULTS: For the first time, we show that PIEZO1 is preferentially expressed in healthy hematopoietic stem and progenitor cells in human hematopoiesis, and globally overexpressed in AML cells. In AML subtypes, PIEZO1 expression associates with favorable outcomes as better overall (OS) and disease-free survival (DFS). If PIEZO1 is expressed and functional in THP1 leukemic myeloid cell line, its chemical activation doesn't impact the proliferation, differentiation, nor survival of cells. However, the downregulation of PIEZO1 expression dramatically reduces the proliferation and the survival of THP1 cells. We show that PIEZO1 knock-down blocks the cell cycle in G0/G1 phases of AML cells, impairs the DNA damage response pathways, and critically increases cell death by triggering extrinsic apoptosis pathways. CONCLUSIONS: Altogether, our results reveal a new role for PIEZO1 mechanosensing in the survival and proliferation of leukemic blasts, which could pave the way for new therapeutic strategies to target AML cells.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células Madre Hematopoyéticas , Diferenciación Celular , Hematopoyesis , División Celular , Proliferación Celular , Línea Celular Tumoral , Microambiente Tumoral , Canales Iónicos/genética , Canales Iónicos/metabolismo
3.
Blood Cells Mol Dis ; 103: 102780, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37516005

RESUMEN

We report here an instructive case referred at 16 months-old for exploration of hemolysis without anemia (compensated anemia with reticulocytosis). The biology tests confirmed the hemolysis with increased total and indirect bilirubin. The usual hemolysis diagnosis tests were normal (DAT, G6PD, PK, Hb electrophoresis) except cytology and ektacytometry suggesting an association of multiple red blood cell (RBC) membrane disorders. This led us to propose a molecular screening analysis using targeted-Next Generation Sequencing (t-NGS) with a capture technique on 93 genes involved in RBC and erythropoiesis defects. We identified 4 missense heterozygous allelic variations, all of them were described without any significance (VUS) in the SLC4A1, RhAG, PIEZO1 and SPTB genes. The study of the familial cosegregation and research functional tests allowed to decipher the role of at least two by two genes in the phenotype and the hemolytic disease of this young patient. Specialized t-NGS panel (or virtual exome/genome sequencing) in a disease-referent laboratory and the motivated collaboration of clinicians, biologists and scientists should be the gold standard for improving the diagnosis of the patients affected with RBC diseases or rare inherited anemias.


Asunto(s)
Enfermedades Hematológicas , Esferocitosis Hereditaria , Humanos , Esferocitosis Hereditaria/diagnóstico , Esferocitosis Hereditaria/genética , Espectrina/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Hemólisis , Mutación , Eritrocitos , Fenotipo , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Canales Iónicos/genética
4.
N Engl J Med ; 389(6): 527-539, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37342957

RESUMEN

BACKGROUND: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown. METHODS: We conducted genetic, immunologic, and molecular assays in four patients from four unrelated families who presented with infections, early-onset severe immune dysregulation, normocytic anemia of variable severity associated with anisopoikilocytosis, and developmental delay. Functional assays were performed in patient-derived cells, as well as in mouse and zebrafish models. RESULTS: We identified rare, X-linked germline mutations in DOCK11 in the patients, leading to a loss of protein expression in two patients and impaired CDC42 activation in all four patients. Patient-derived T cells did not form filopodia and showed abnormal migration. In addition, the patient-derived T cells, as well as the T cells from Dock11-knockout mice, showed overt activation and production of proinflammatory cytokines that were associated with an increased degree of nuclear translocation of nuclear factor of activated T cell 1 (NFATc1). Anemia and aberrant erythrocyte morphologic features were recapitulated in a newly generated dock11-knockout zebrafish model, and anemia was amenable to rescue on ectopic expression of constitutively active CDC42. CONCLUSIONS: Germline hemizygous loss-of-function mutations affecting the actin regulator DOCK11 were shown to cause a previously unknown inborn error of hematopoiesis and immunity characterized by severe immune dysregulation and systemic inflammation, recurrent infections, and anemia. (Funded by the European Research Council and others.).


Asunto(s)
Actinas , Anemia , Factores de Intercambio de Guanina Nucleótido , Inflamación , Animales , Humanos , Ratones , Actinas/genética , Actinas/metabolismo , Anemia/etiología , Anemia/genética , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/deficiencia , Factores de Intercambio de Guanina Nucleótido/genética , Hematopoyesis , Inflamación/etiología , Inflamación/genética , Pez Cebra/genética , Pez Cebra/metabolismo
5.
Blood ; 141(20): 2520-2536, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-36735910

RESUMEN

Metabolic programs contribute to hematopoietic stem and progenitor cell (HSPC) fate, but it is not known whether the metabolic regulation of protein synthesis controls HSPC differentiation. Here, we show that SLC7A1/cationic amino acid transporter 1-dependent arginine uptake and its catabolism to the polyamine spermidine control human erythroid specification of HSPCs via the activation of the eukaryotic translation initiation factor 5A (eIF5A). eIF5A activity is dependent on its hypusination, a posttranslational modification resulting from the conjugation of the aminobutyl moiety of spermidine to lysine. Notably, attenuation of hypusine synthesis in erythroid progenitors, by the inhibition of deoxyhypusine synthase, abrogates erythropoiesis but not myeloid cell differentiation. Proteomic profiling reveals mitochondrial translation to be a critical target of hypusinated eIF5A, and accordingly, progenitors with decreased hypusine activity exhibit diminished oxidative phosphorylation. This affected pathway is critical for eIF5A-regulated erythropoiesis, as interventions augmenting mitochondrial function partially rescue human erythropoiesis under conditions of attenuated hypusination. Levels of mitochondrial ribosomal proteins (RPs) were especially sensitive to the loss of hypusine, and we find that the ineffective erythropoiesis linked to haploinsufficiency of RPS14 in chromosome 5q deletions in myelodysplastic syndrome is associated with a diminished pool of hypusinated eIF5A. Moreover, patients with RPL11-haploinsufficient Diamond-Blackfan anemia as well as CD34+ progenitors with downregulated RPL11 exhibit a markedly decreased hypusination in erythroid progenitors, concomitant with a loss of mitochondrial metabolism. Thus, eIF5A-dependent protein synthesis regulates human erythropoiesis, and our data reveal a novel role for RPs in controlling eIF5A hypusination in HSPCs, synchronizing mitochondrial metabolism with erythroid differentiation.


Asunto(s)
Proteómica , Espermidina , Humanos , Espermidina/metabolismo , Factores de Iniciación de Péptidos/genética , Diferenciación Celular , Factor 5A Eucariótico de Iniciación de Traducción
6.
Blood ; 139(21): 3111-3126, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35213692

RESUMEN

The congenital bone marrow failure syndrome Diamond-Blackfan anemia (DBA) is typically associated with variants in ribosomal protein (RP) genes impairing erythroid cell development. Here we report multiple individuals with biallelic HEATR3 variants exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and intellectual disability. These variants destabilize a protein whose yeast homolog is known to synchronize the nuclear import of RPs uL5 (RPL11) and uL18 (RPL5), which are both critical for producing ribosomal subunits and for stabilizing the p53 tumor suppressor when ribosome biogenesis is compromised. Expression of HEATR3 variants or repression of HEATR3 expression in primary cells, cell lines of various origins, and yeast models impairs growth, differentiation, pre-ribosomal RNA processing, and ribosomal subunit formation reminiscent of DBA models of large subunit RP gene variants. Consistent with a role of HEATR3 in RP import, HEATR3-depleted cells or patient-derived fibroblasts display reduced nuclear accumulation of uL18. Hematopoietic progenitor cells expressing HEATR3 variants or small-hairpin RNAs knocking down HEATR3 synthesis reveal abnormal acceleration of erythrocyte maturation coupled to severe proliferation defects that are independent of p53 activation. Our study uncovers a new pathophysiological mechanism leading to DBA driven by biallelic HEATR3 variants and the destabilization of a nuclear import protein important for ribosome biogenesis.


Asunto(s)
Anemia de Diamond-Blackfan , Proteínas , Transporte Activo de Núcleo Celular/genética , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mutación , Proteínas/genética , Proteínas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Haematologica ; 105(3): 610-622, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31413092

RESUMEN

Hereditary xerocytosis is a dominantly inherited red cell membrane disorder caused in most cases by gain-of-function mutations in PIEZO1, encoding a mechanosensitive ion channel that translates a mechanic stimulus into calcium influx. We found that PIEZO1 was expressed early in erythroid progenitor cells, and investigated whether it could be involved in erythropoiesis, besides having a role in the homeostasis of mature red cell hydration. In UT7 cells, chemical PIEZO1 activation using YODA1 repressed glycophorin A expression by 75%. This effect was PIEZO1-dependent since it was reverted using specific short hairpin-RNA knockdown. The effect of PIEZO1 activation was confirmed in human primary progenitor cells, maintaining cells at an immature stage for longer and modifying the transcriptional balance in favor of genes associated with early erythropoiesis, as shown by a high GATA2/GATA1 ratio and decreased α/ß-globin expression. The cell proliferation rate was also reduced, with accumulation of cells in G0/G1 of the cell cycle. The PIEZO1-mediated effect on UT7 cells required calcium-dependent activation of the NFAT and ERK1/2 pathways. In primary erythroid cells, PIEZO1 activation synergized with erythropoietin to activate STAT5 and ERK, indicating that it may modulate signaling pathways downstream of erythropoietin receptor activation. Finally, we studied the in-vitro erythroid differentiation of primary cells obtained from 14 PIEZO1-mutated patients, from 11 families, carrying ten different mutations. We observed a delay in erythroid differentiation in all cases, ranging from mild (n=3) to marked (n=8). Overall, these data demonstrate a role for PIEZO1 during erythropoiesis, since activation of PIEZO1 - both chemically and through activating mutations - delays erythroid maturation, providing new insights into the pathophysiology of hereditary xerocytosis.


Asunto(s)
Anemia Hemolítica Congénita , Canales Iónicos , Anemia Hemolítica Congénita/genética , Diferenciación Celular , Eritropoyesis/genética , Humanos , Hidropesía Fetal , Canales Iónicos/genética , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA