Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878275

RESUMEN

Genes regulating body fat are shared with high fidelity by mice and humans, indicating that mouse knockout (KO) phenotyping might identify valuable anti-obesity drug targets. Male Mrs2 magnesium transporter (Mrs2) KO mice were recently reported as thin when fed high-fat diet (HFD). They also exhibited increased energy expenditure (EE)/body weight and had beiged adipocytes that, along with isolated hepatocytes, demonstrated increased oxygen consumption suggesting increased EE drove the thin phenotype. Here we provide our data on these and additional assays in Mrs2 KO mice. We generated Mrs2 KO mice by homologous recombination. HFD-fed male and female Mrs2 KO mice had significantly less body fat, measured by QMR, than WT littermates. HFD-fed Mrs2 KO mice did not demonstrate increased EE by indirect calorimetry and could not maintain body temperature at 4°C, consistent with their decreased BAT stores but despite increased beige WAT. Instead, when provided a choice between HFD and low-fat diet (LFD), Mrs2 KO mice showed a significant 15% decrease in total energy intake resulting from significantly lower HFD intake that offset numerically increased LFD intake. Food restriction studies performed using WT mice suggested that this decrease in energy intake could explain the loss of body fat. OGTT studies revealed significantly improved insulin sensitivity in Mrs2 KO mice. We conclude that HFD-fed Mrs2 KO mice are thin with improved insulin sensitivity, and that this favorable metabolic phenotype is driven by hypophagia. Further evaluation is warranted to determine the suitability of MRS2 as a drug target for anti-obesity therapeutics.

2.
Diabetes Metab Syndr Obes ; 15: 45-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35023939

RESUMEN

PURPOSE: Humans with haploinsufficiency of GPR75, an orphan GPCR, are thin. Gpr75 knockout (KO) mice are also thin with improved glucose homeostasis. We wanted to confirm these findings in Gpr75 KO mice and determine whether decreased energy intake and/or increased energy expenditure contributed to the thin phenotype. METHODS: Gpr75 KO mice were generated by homologous recombination. All studies compared female and male Gpr75 KO mice to their wild type (WT) littermates. Body composition was measured by DXA and QMR technologies. Glucose homeostasis was evaluated by measuring glucose and insulin levels during oral glucose tolerance tests (OGTTs). Food intake was measured in group-housed mice. In singly housed mice, energy expenditure was measured in Oxymax indirect calorimetry chambers, and locomotor activity was measured in Oxymax and Photobeam Activity System chambers. RESULTS: In all 12 cohorts of adult female or male mice, Gpr75 KO mice had less body fat; pooled data showed that, compared to WT littermates (n = 103), Gpr75 KO mice (n = 118) had 49% less body fat and 4% less LBM (P < 0.001 for each). KO mice also had 8% less body fat at weaning (P < 0.05), and during the month after weaning as the thin phenotype became more exaggerated, Gpr75 KO mice ate significantly less than, but had energy expenditure and activity levels comparable to, their WT littermates. During OGTTs, Gpr75 KO mice showed improved glucose tolerance (glucose AUC 23% lower in females, P < 0.05, and 26% lower in males, P < 0.001), accompanied by significantly decreased insulin levels and significantly increased insulin sensitivity indices. CONCLUSION: Gpr75 KO mice are thin at weaning, are hypophagic as the thin phenotype becomes more exaggerated, and exhibit improved glucose tolerance and insulin sensitivity as healthy-appearing adults. These results suggest that inhibiting GPR75 in obese humans may safely decrease energy intake and body fat while improving glucose tolerance and insulin sensitivity.

3.
Diabetes Metab Syndr Obes ; 14: 3753-3785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483672

RESUMEN

PURPOSE: Obesity is a major public health problem. Understanding which genes contribute to obesity may better predict individual risk and allow development of new therapies. Because obesity of a mouse gene knockout (KO) line predicts an association of the orthologous human gene with obesity, we reviewed data from the Lexicon Genome5000TM high throughput phenotypic screen (HTS) of mouse gene KOs to identify KO lines with high body fat. MATERIALS AND METHODS: KO lines were generated using homologous recombination or gene trapping technologies. HTS body composition analyses were performed on adult wild-type and homozygous KO littermate mice from 3758 druggable mouse genes having a human ortholog. Body composition was measured by either DXA or QMR on chow-fed cohorts from all 3758 KO lines and was measured by QMR on independent high fat diet-fed cohorts from 2488 of these KO lines. Where possible, comparisons were made to HTS data from the International Mouse Phenotyping Consortium (IMPC). RESULTS: Body fat data are presented for 75 KO lines. Of 46 KO lines where independent external published and/or IMPC KO lines are reported as obese, 43 had increased body fat. For the remaining 29 novel high body fat KO lines, Ksr2 and G2e3 are supported by data from additional independent KO cohorts, 6 (Asnsd1, Srpk2, Dpp8, Cxxc4, Tenm3 and Kiss1) are supported by data from additional internal cohorts, and the remaining 21 including Tle4, Ak5, Ntm, Tusc3, Ankk1, Mfap3l, Prok2 and Prokr2 were studied with HTS cohorts only. CONCLUSION: These data support the finding of high body fat in 43 independent external published and/or IMPC KO lines. A novel obese phenotype was identified in 29 additional KO lines, with 27 still lacking the external confirmation now provided for Ksr2 and G2e3 KO mice. Undoubtedly, many mammalian obesity genes remain to be identified and characterized.

4.
Diabetes Metab Syndr Obes ; 13: 2641-2652, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801815

RESUMEN

PURPOSE: In humans, single nucleotide polymorphisms (SNPs) near the adjacent protein kinase D1 (PRKD1) and G2/M-phase-specific E3 ubiquitin protein ligase (G2E3) genes on chromosome 14 are associated with obesity. To date, no published evidence links inactivation of either gene to changes in body fat. These two genes are also adjacent on mouse chromosome 12. Because obesity genes are highly conserved between humans and mice, we analyzed body fat in adult G2e3 and Prkd1 knockout (KO) mice to determine whether inactivating either gene leads to obesity in mice and, by inference, probably in humans. METHODS: The G2e3 and Prkd1 KO lines were generated by gene trapping and by homologous recombination methodologies, respectively. Body fat was measured by DEXA in adult mice fed chow from weaning and by QMR in a separate cohort of mice fed high-fat diet (HFD) from weaning. Glucose homeostasis was evaluated with oral glucose tolerance tests (OGTTs) performed on adult mice fed HFD from weaning. RESULTS: Body fat was increased in multiple cohorts of G2e3 KO mice relative to their wild-type (WT) littermates. When data from all G2e3 KO (n=32) and WT (n=31) mice were compared, KO mice showed increases of 11% in body weight (P<0.01), 65% in body fat (P<0.001), 48% in % body fat (P<0.001), and an insignificant 3% decrease in lean body mass. G2e3 KO mice were also glucose intolerant during an OGTT (P<0.05). In contrast, Prkd1 KO and WT mice had comparable body fat levels and glucose tolerance. CONCLUSION: Significant obesity and glucose intolerance were observed in G2e3, but not Prkd1, KO mice. The conservation of obesity genes between mice and humans strongly suggests that the obesity-associated SNPs located near the human G2E3 and PRKD1 genes are linked to variants that decrease the amount of functional human G2E3.

5.
Endocrinology ; 157(12): 4534-4541, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27754787

RESUMEN

Polymorphisms in the SLC30A8 gene, which encodes the ZnT8 zinc transporter, are associated with altered susceptibility to type 2 diabetes (T2D), and SLC30A8 haploinsufficiency is protective against the development of T2D in obese humans. SLC30A8 is predominantly expressed in pancreatic islet ß-cells, but surprisingly, multiple knockout mouse studies have shown little effect of Slc30a8 deletion on glucose tolerance or glucose-stimulated insulin secretion (GSIS). Multiple other Slc30a isoforms are expressed at low levels in pancreatic islets. We hypothesized that functional compensation by the Slc30a7 isoform, which encodes ZnT7, limits the impact of Slc30a8 deletion on islet function. We therefore analyzed the effect of Slc30a7 deletion alone or in combination with Slc30a8 on in vivo glucose metabolism and GSIS in isolated islets. Deletion of Slc30a7 alone had complex effects in vivo, impairing glucose tolerance and reducing the glucose-stimulated increase in plasma insulin levels, hepatic glycogen levels, and pancreatic insulin content. Slc30a7 deletion also affected islet morphology and increased the ratio of islet α- to ß-cells. However, deletion of Slc30a7 alone had no effect on GSIS in isolated islets, whereas combined deletion of Slc30a7 and Slc30a8 abolished GSIS. These data demonstrate that the function of ZnT8 in islets can be unmasked by removal of ZnT7 and imply that ZnT8 may affect T2D susceptibility through actions in other tissues where it is expressed at low levels rather than through effects on pancreatic islet function.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Peso Corporal/genética , Proteínas de Transporte de Catión/genética , Femenino , Células Secretoras de Glucagón/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Factores Sexuales , Transportador 8 de Zinc
6.
Diabetes Metab Syndr Obes ; 9: 185-99, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27382320

RESUMEN

Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease.

8.
Nat Commun ; 6: 6228, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25736573

RESUMEN

The identification of pathways necessary for photoreceptor and retinal pigment epithelium (RPE) function is critical to uncover therapies for blindness. Here we report the discovery of adiponectin receptor 1 (AdipoR1) as a regulator of these cells' functions. Docosahexaenoic acid (DHA) is avidly retained in photoreceptors, while mechanisms controlling DHA uptake and retention are unknown. Thus, we demonstrate that AdipoR1 ablation results in DHA reduction. In situ hybridization reveals photoreceptor and RPE cell AdipoR1 expression, blunted in AdipoR1(-/-) mice. We also find decreased photoreceptor-specific phosphatidylcholine containing very long-chain polyunsaturated fatty acids and severely attenuated electroretinograms. These changes precede progressive photoreceptor degeneration in AdipoR1(-/-) mice. RPE-rich eyecup cultures from AdipoR1(-/-) reveal impaired DHA uptake. AdipoR1 overexpression in RPE cells enhances DHA uptake, whereas AdipoR1 silencing has the opposite effect. These results establish AdipoR1 as a regulatory switch of DHA uptake, retention, conservation and elongation in photoreceptors and RPE, thus preserving photoreceptor cell integrity.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Células Fotorreceptoras de Vertebrados/fisiología , Receptores de Adiponectina/metabolismo , Epitelio Pigmentado de la Retina/fisiología , Animales , Electrorretinografía , Hibridación in Situ , Ratones , Ratones Noqueados , Fosfatidilcolinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
9.
PLoS One ; 9(5): e98151, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24852423

RESUMEN

Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1-/- B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1-/- CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.


Asunto(s)
Autoinmunidad , Factor de Crecimiento de Hepatocito/genética , Proteínas Proto-Oncogénicas/genética , Linfocitos T/inmunología , Animales , Artritis Reumatoide/inmunología , Secuencia de Bases , Cartilla de ADN , Activación de Linfocitos , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Invest Ophthalmol Vis Sci ; 54(6): 4072-80, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23696608

RESUMEN

PURPOSE: Protein acetylation is an essential mechanism in regulating transcriptional and inflammatory events. Studies have shown that nonselective histone deacetylase (HDAC) inhibitors can protect the retina from ischemic injury in rats. However, the role of specific HDAC isoforms in retinal degenerative processes remains obscure. The purpose of this study was to investigate the role of HDAC2 isoform in a mouse model of ischemic retinal injury. METHODS: Localization of HDAC2 in mice retinas was evaluated by immunohistochemical analyses. To investigate whether selective reduction in HDAC2 activity can protect the retina from ischemic injury, Hdac2⁺/⁻ mice were utilized. Electroretinographic (ERG) and morphometric analyses were used to assess retinal function and morphology. RESULTS: Our results demonstrated that HDAC2 is primarily localized in nuclei in inner nuclear and retinal ganglion cell layers, and HDAC2 activity accounted for approximately 35% of the total activities of HDAC1, 2, 3, and 6 in the retina. In wild-type mice, ERG a- and b-waves from ischemic eyes were significantly reduced when compared to pre-ischemia baseline values. Morphometric examination of these eyes revealed significant degeneration of inner retinal layers. In Hdac2⁺/⁻ mice, ERG a- and b-waves from ischemic eyes were significantly greater than those measured in ischemic eyes from wild-type mice. Morphologic measurements demonstrated that Hdac2⁺/⁻ mice exhibit significantly less retinal degeneration than wild-type mice. CONCLUSIONS: This study demonstrated that suppressing HDAC2 expression can effectively reduce ischemic retinal injury. Our results support the idea that the development of selective HDAC2 inhibitors may provide an efficacious treatment for ischemic retinal injury.


Asunto(s)
Modelos Animales de Enfermedad , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Daño por Reperfusión/prevención & control , Retina/efectos de los fármacos , Degeneración Retiniana/prevención & control , Animales , Electrorretinografía , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Ácidos Hidroxámicos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/enzimología , Retina/metabolismo , Retina/fisiología , Degeneración Retiniana/enzimología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/fisiología
11.
Am J Physiol Renal Physiol ; 304(2): F156-67, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23152292

RESUMEN

The Na-glucose cotransporter SGLT2 mediates high-capacity glucose uptake in the early proximal tubule and SGLT2 inhibitors are developed as new antidiabetic drugs. We used gene-targeted Sglt2 knockout (Sglt2(-/-)) mice to elucidate the contribution of SGLT2 to blood glucose control, glomerular hyperfiltration, kidney growth, and markers of renal growth and injury at 5 wk and 4.5 mo after induction of low-dose streptozotocin (STZ) diabetes. The absence of SGLT2 did not affect renal mRNA expression of glucose transporters SGLT1, NaGLT1, GLUT1, or GLUT2 in response to STZ. Application of STZ increased blood glucose levels to a lesser extent in Sglt2(-/-) vs. wild-type (WT) mice (∼300 vs. 470 mg/dl) but increased glucosuria and food and fluid intake to similar levels in both genotypes. Lack of SGLT2 prevented STZ-induced glomerular hyperfiltration but not the increase in kidney weight. Knockout of SGLT2 attenuated the STZ-induced renal accumulation of p62/sequestosome, an indicator of impaired autophagy, but did not attenuate the rise in renal expression of markers of kidney growth (p27 and proliferating cell nuclear antigen), oxidative stress (NADPH oxidases 2 and 4 and heme oxygenase-1), inflammation (interleukin-6 and monocyte chemoattractant protein-1), fibrosis (fibronectin and Sirius red-sensitive tubulointerstitial collagen accumulation), or injury (renal/urinary neutrophil gelatinase-associated lipocalin). SGLT2 deficiency did not induce ascending urinary tract infection in nondiabetic or diabetic mice. The results indicate that SGLT2 is a determinant of hyperglycemia and glomerular hyperfiltration in STZ-induced diabetes mellitus but is not critical for the induction of renal growth and markers of renal injury, inflammation, and fibrosis.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Hiperglucemia/metabolismo , Riñón/crecimiento & desarrollo , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Glucemia , Diabetes Mellitus Experimental/sangre , Nefropatías Diabéticas/genética , Tasa de Filtración Glomerular , Hiperglucemia/sangre , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transportador 2 de Sodio-Glucosa/genética
12.
Am J Physiol Endocrinol Metab ; 304(2): E117-30, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23149623

RESUMEN

Sodium-glucose cotransporter 2 (SGLT2) is the major, and SGLT1 the minor, transporter responsible for renal glucose reabsorption. Increasing urinary glucose excretion (UGE) by selectively inhibiting SGLT2 improves glycemic control in diabetic patients. We generated Sglt1 and Sglt2 knockout (KO) mice, Sglt1/Sglt2 double-KO (DKO) mice, and wild-type (WT) littermates to study their relative glycemic control and to determine contributions of SGLT1 and SGLT2 to UGE. Relative to WTs, Sglt2 KOs had improved oral glucose tolerance and were resistant to streptozotocin-induced diabetes. Sglt1 KOs fed glucose-free high-fat diet (G-free HFD) had improved oral glucose tolerance accompanied by delayed intestinal glucose absorption and increased circulating glucagon-like peptide-1 (GLP-1), but had normal intraperitoneal glucose tolerance. On G-free HFD, Sglt2 KOs had 30%, Sglt1 KOs 2%, and WTs <1% of the UGE of DKOs. Consistent with their increased UGE, DKOs had lower fasting blood glucose and improved intraperitoneal glucose tolerance than Sglt2 KOs. In conclusion, 1) Sglt2 is the major renal glucose transporter, but Sglt1 reabsorbs 70% of filtered glucose if Sglt2 is absent; 2) mice lacking Sglt2 display improved glucose tolerance despite UGE that is 30% of maximum; 3) Sglt1 KO mice respond to oral glucose with increased circulating GLP-1; and 4) DKO mice have improved glycemic control over mice lacking Sglt2 alone. These data suggest that, in patients with type 2 diabetes, combining pharmacological SGLT2 inhibition with complete renal and/or partial intestinal SGLT1 inhibition may improve glycemic control over that achieved by SGLT2 inhibition alone.


Asunto(s)
Glucemia/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transportador 2 de Sodio-Glucosa/genética , Animales , Glucemia/genética , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/orina , Femenino , Péptido 1 Similar al Glucagón/farmacología , Prueba de Tolerancia a la Glucosa , Glucosuria/genética , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transportador 1 de Sodio-Glucosa/fisiología , Transportador 2 de Sodio-Glucosa/fisiología , Estreptozocina
13.
PLoS One ; 7(9): e45500, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029056

RESUMEN

Receptor tyrosine phosphatase gamma (PTPRG, or RPTPγ) is a mammalian receptor-like tyrosine phosphatase which is highly expressed in the nervous system as well as other tissues. Its function and biochemical characteristics remain largely unknown. We created a knockdown (KD) line of this gene in mouse by retroviral insertion that led to 98-99% reduction of RPTPγ gene expression. The knockdown mice displayed antidepressive-like behaviors in the tail-suspension test, confirming observations by Lamprianou et al. 2006. We investigated this phenotype in detail using multiple behavioral assays. To see if the antidepressive-like phenotype was due to the loss of phosphatase activity, we made a knock-in (KI) mouse in which a mutant, RPTPγ C1060S, replaced the wild type. We showed that human wild type RPTPγ protein, expressed and purified, demonstrated tyrosine phosphatase activity, and that the RPTPγ C1060S mutant was completely inactive. Phenotypic analysis showed that the KI mice also displayed some antidepressive-like phenotype. These results lead to a hypothesis that an RPTPγ inhibitor could be a potential treatment for human depressive disorders. In an effort to identify a natural substrate of RPTPγ for use in an assay for identifying inhibitors, "substrate trapping" mutants (C1060S, or D1028A) were studied in binding assays. Expressed in HEK293 cells, these mutant RPTPγs retained a phosphorylated tyrosine residue, whereas similarly expressed wild type RPTPγ did not. This suggested that wild type RPTPγ might auto-dephosphorylate which was confirmed by an in vitro dephosphorylation experiment. Using truncation and mutagenesis studies, we mapped the auto-dephosphorylation to the Y1307 residue in the D2 domain. This novel discovery provides a potential natural substrate peptide for drug screening assays, and also reveals a potential functional regulatory site for RPTPγ. Additional investigation of RPTPγ activity and regulation may lead to a better understanding of the biochemical underpinnings of human depression.


Asunto(s)
Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Animales , Femenino , Técnicas de Inactivación de Genes , Orden Génico , Marcación de Gen , Células HEK293 , Humanos , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Mutación , Fenotipo , Fosforilación , Esfuerzo Físico , Especificidad por Sustrato
14.
Obesity (Silver Spring) ; 19(5): 1010-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21127480

RESUMEN

The kinase suppressor of ras 2 (KSR2) gene resides at human chromosome 12q24, a region linked to obesity and type 2 diabetes (T2D). While knocking out and phenotypically screening mouse orthologs of thousands of druggable human genes, we found KSR2 knockout (KSR2(-/-)) mice to be more obese and glucose intolerant than melanocortin 4 receptor(-/-) (MC4R(-/-)) mice. The obesity and T2D of KSR2(-/-) mice resulted from hyperphagia which was unresponsive to leptin and did not originate downstream of MC4R. The kinases AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are each linked to food intake regulation, but only mTOR had increased activity in KSR2(-/-) mouse brain, and the ability of rapamycin to inhibit food intake in KSR2(-/-) mice further implicated mTOR in this process. The metabolic phenotype of KSR2 heterozygous (KSR2(+/minus;)) and KSR2(-/-) mice suggests that human KSR2 variants may contribute to a similar phenotype linked to human chromosome 12q24.


Asunto(s)
Tejido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hiperfagia/metabolismo , Obesidad/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Ingestión de Alimentos/genética , Leptina/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética
15.
J Am Soc Nephrol ; 22(1): 104-12, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20616166

RESUMEN

Mutations in the gene encoding for the Na(+)-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2(-/-) mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2(-/-) mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2(-/-) mice compared with WT mice and varied in Sglt2(-/-) mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2(-/-) mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2(-/-) mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations.


Asunto(s)
Glucosa/metabolismo , Túbulos Renales Proximales/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Absorción/fisiología , Aldosterona/sangre , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Microvellosidades/metabolismo , ARN Mensajero/metabolismo , Renina/sangre , Transportador 2 de Sodio-Glucosa/genética
16.
Nat Biotechnol ; 28(7): 749-55, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20562862

RESUMEN

Large collections of knockout organisms facilitate the elucidation of gene functions. Here we used retroviral insertion or homologous recombination to disrupt 472 genes encoding secreted and membrane proteins in mice, providing a resource for studying a large fraction of this important class of drug target. The knockout mice were subjected to a systematic phenotypic screen designed to uncover alterations in embryonic development, metabolism, the immune system, the nervous system and the cardiovascular system. The majority of knockout lines exhibited altered phenotypes in at least one of these therapeutic areas. To our knowledge, a comprehensive phenotypic assessment of a large number of mouse mutants generated by a gene-specific approach has not been described previously.


Asunto(s)
Proteínas de la Membrana/genética , Animales , Ratones , Ratones Noqueados
17.
Mol Biol Cell ; 20(20): 4381-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19710420

RESUMEN

The mannose 6-phosphate (Man-6-P) lysosomal targeting signal on acid hydrolases is synthesized by the sequential action of uridine 5'-diphosphate-N-acetylglucosamine: lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-1-phosphotransferase) and GlcNAc-1-phosphodiester alpha-N-acetylglucosaminidase ("uncovering enzyme" or UCE). Mutations in the two genes that encode GlcNAc-1-phosphotransferase give rise to lysosomal storage diseases (mucolipidosis type II and III), whereas no pathological conditions have been associated with the loss of UCE activity. To analyze the consequences of UCE deficiency, the UCE gene was inactivated via insertional mutagenesis in mice. The UCE -/- mice were viable, grew normally and lacked detectable histologic abnormalities. However, the plasma levels of six acid hydrolases were elevated 1.6- to 5.4-fold over wild-type levels. These values underestimate the degree of hydrolase hypersecretion as these enzymes were rapidly cleared from the plasma by the mannose receptor. The secreted hydrolases contained GlcNAc-P-Man diesters, exhibited a decreased affinity for the cation-independent mannose 6-phosphate receptor and failed to bind to the cation-dependent mannose 6-phosphate receptor. These data demonstrate that UCE accounts for all the uncovering activity in the Golgi. We propose that in the absence of UCE, the weak binding of the acid hydrolases to the cation-independent mannose 6-phosphate receptor allows sufficient sorting to lysosomes to prevent the tissue abnormalities seen with GlcNAc-1-phosphotranferase deficiency.


Asunto(s)
Hidrolasas Diéster Fosfóricas/deficiencia , Animales , Encéfalo/enzimología , Catepsina D/metabolismo , Endocitosis , Femenino , Fibroblastos/enzimología , Fibroblastos/metabolismo , Glicosilación , Aparato de Golgi/enzimología , Hidrolasas/análisis , Hidrolasas/sangre , Células L/metabolismo , Hígado/enzimología , Lisosomas/enzimología , Masculino , Manosafosfatos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutagénesis Insercional , Fenotipo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/fisiología , Procesamiento Proteico-Postraduccional , Receptor IGF Tipo 2/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/deficiencia
18.
Cell ; 136(2): 235-48, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19135240

RESUMEN

Dysfunction and loss of insulin-producing pancreatic beta cells represent hallmarks of diabetes mellitus. Here, we show that mice lacking the mitogen-activated protein kinase (MAPK) p38delta display improved glucose tolerance due to enhanced insulin secretion from pancreatic beta cells. Deletion of p38delta results in pronounced activation of protein kinase D (PKD), the latter of which we have identified as a pivotal regulator of stimulated insulin exocytosis. p38delta catalyzes an inhibitory phosphorylation of PKD1, thereby attenuating stimulated insulin secretion. In addition, p38delta null mice are protected against high-fat-feeding-induced insulin resistance and oxidative stress-mediated beta cell failure. Inhibition of PKD1 reverses enhanced insulin secretion from p38delta-deficient islets and glucose tolerance in p38delta null mice as well as their susceptibility to oxidative stress. In conclusion, the p38delta-PKD pathway integrates regulation of the insulin secretory capacity and survival of pancreatic beta cells, pointing to a pivotal role for this pathway in the development of overt diabetes mellitus.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , Proteína Quinasa C/metabolismo , Animales , Exocitosis , Femenino , Glucosa/metabolismo , Aparato de Golgi/metabolismo , Secreción de Insulina , Masculino , Ratones , Proteína Quinasa 13 Activada por Mitógenos/genética , Fosfolipasas de Tipo C/metabolismo
19.
Obesity (Silver Spring) ; 16(10): 2362-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18719666

RESUMEN

We developed a high-throughput approach to knockout (KO) and phenotype mouse orthologs of the 5,000 potential drug targets in the human genome. As part of the phenotypic screen, dual-energy X-ray absorptiometry (DXA) technology estimates body-fat stores in eight KO and four wild-type (WT) littermate chow-fed mice from each line. Normalized % body fat (nBF) (mean KO % body fat/mean WT littermate % body fat) values from the first 2322 lines with viable KO mice at 14 weeks of age showed a normal distribution. We chose to determine how well this screen identifies body-fat phenotypes by selecting 13 of these 2322 KO lines to serve as benchmarks based on their published lean or obese phenotype on a chow diet. The nBF values for the eight benchmark KO lines with a lean phenotype were > or =1 s.d. below the mean for seven (perilipin, SCD1, CB1, MCH1R, PTP1B, GPAT1, PIP5K2B) but close to the mean for NPY Y4R. The nBF values for the five benchmark KO lines with an obese phenotype were >2 s.d. above the mean for four (MC4R, MC3R, BRS3, translin) but close to the mean for 5HT2cR. This screen also identifies novel body-fat phenotypes as exemplified by the obese kinase suppressor of ras 2 (KSR2) KO mice. These body-fat phenotypes were confirmed upon studying additional cohorts of mice for KSR2 and all 13 benchmark KO lines. This simple and cost-effective screen appears capable of identifying genes with a role in regulating mammalian body fat.


Asunto(s)
Absorciometría de Fotón , Tejido Adiposo/fisiopatología , Adiposidad/genética , Obesidad/fisiopatología , Delgadez/fisiopatología , Tejido Adiposo/diagnóstico por imagen , Animales , Grasas de la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Femenino , Genotipo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Obesidad/diagnóstico por imagen , Obesidad/genética , Fenotipo , Reproducibilidad de los Resultados , Delgadez/diagnóstico por imagen , Delgadez/genética
20.
Proc Natl Acad Sci U S A ; 104(28): 11766-71, 2007 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-17609370

RESUMEN

We used gene knockout mice to explore the role of Angiopoietin-like-4 (Angptl4) in lipid metabolism as well as to generate anti-Angptl4 mAbs with pharmacological activity. Angptl4 -/- mice had lower triglyceride (TG) levels resulting both from increased very low-density lipoprotein (VLDL) clearance and decreased VLDL production and had modestly lower cholesterol levels. Also, both Angptl4 -/- suckling mice and adult mice fed a high-fat diet showed reduced viability associated with lipogranulomatous lesions of the intestines and their draining lymphatics and mesenteric lymph nodes. Treating C57BL/6J, ApoE -/-, LDLr -/-, and db/db mice with the anti-Angptl4 mAb 14D12 recapitulated the lipid and histopathologic phenotypes noted in Angptl4 -/- mice. This demonstrates that the knockout phenotype reflects not only the physiologic function of the Angptl4 gene but also predicts the pharmacologic consequences of Angptl4 protein inhibition with a neutralizing antibody in relevant models of human disease.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/inmunología , Hipolipemiantes/administración & dosificación , Lípidos/antagonistas & inhibidores , Fenotipo , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas , Animales , Anticuerpos Bloqueadores/administración & dosificación , Anticuerpos Bloqueadores/biosíntesis , Anticuerpos Monoclonales/biosíntesis , Proteínas Sanguíneas/deficiencia , Proteínas Sanguíneas/fisiología , Hipolipemiantes/metabolismo , Hipolipemiantes/uso terapéutico , Lípidos/biosíntesis , Lípidos/sangre , Lipoproteínas VLDL/antagonistas & inhibidores , Lipoproteínas VLDL/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Triglicéridos/antagonistas & inhibidores , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...