Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3345, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291094

RESUMEN

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.


Asunto(s)
Células Endoteliales , Roedores , Ratones , Ratas , Animales , Células Endoteliales/metabolismo , Roedores/genética , Macaca mulatta/genética , Encéfalo/metabolismo , Tropismo/genética , Ratones Noqueados , Dependovirus/metabolismo , Vectores Genéticos/genética , Transducción Genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Matriz Extracelular/genética
2.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711773

RESUMEN

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds and rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and ex vivo human brain slices although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. Vasculature-secreted Hevin (a synaptogenic protein) rescued synaptic deficits in a mouse model.

3.
Nat Neurosci ; 18(4): 562-568, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25706472

RESUMEN

Organization of behavior requires rapid coordination of brainstem and forebrain activity. The exact mechanisms of effective communication between these regions are presently unclear. The intralaminar thalamic nuclei (IL) probably serves as a central hub in this circuit by connecting the critical brainstem and forebrain areas. We found that GABAergic and glycinergic fibers ascending from the pontine reticular formation (PRF) of the brainstem evoked fast and reliable inhibition in the IL via large, multisynaptic terminals. This inhibition was fine-tuned through heterogeneous GABAergic and glycinergic receptor ratios expressed at individual synapses. Optogenetic activation of PRF axons in the IL of freely moving mice led to behavioral arrest and transient interruption of awake cortical activity. An afferent system with comparable morphological features was also found in the human IL. These data reveal an evolutionarily conserved ascending system that gates forebrain activity through fast and powerful synaptic inhibition of the IL.


Asunto(s)
Vías Aferentes/fisiología , Conducta Animal/fisiología , Neuronas GABAérgicas/fisiología , Glicina/metabolismo , Núcleos Talámicos Intralaminares/fisiología , Fibras Nerviosas/fisiología , Inhibición Neural/fisiología , Tegmento Pontino/fisiología , Animales , Masculino , Ratones , Optogenética , Técnicas de Placa-Clamp , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo
4.
Cereb Cortex ; 24(12): 3167-79, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23825316

RESUMEN

Ascending and descending information is relayed through the thalamus via strong, "driver" pathways. According to our current knowledge, different driver pathways are organized in parallel streams and do not interact at the thalamic level. Using an electron microscopic approach combined with optogenetics and in vivo physiology, we examined whether driver inputs arising from different sources can interact at single thalamocortical cells in the rodent somatosensory thalamus (nucleus posterior, POm). Both the anatomical and the physiological data demonstrated that ascending driver inputs from the brainstem and descending driver inputs from cortical layer 5 pyramidal neurons converge and interact on single thalamocortical neurons in POm. Both individual pathways displayed driver properties, but they interacted synergistically in a time-dependent manner and when co-activated, supralinearly increased the output of thalamus. As a consequence, thalamocortical neurons reported the relative timing between sensory events and ongoing cortical activity. We conclude that thalamocortical neurons can receive 2 powerful inputs of different origin, rather than only a single one as previously suggested. This allows thalamocortical neurons to integrate raw sensory information with powerful cortical signals and transfer the integrated activity back to cortical networks.


Asunto(s)
Corteza Cerebral/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Sinapsis/metabolismo , Tálamo/citología , Animales , Biotina/análogos & derivados , Channelrhodopsins , Dextranos , Potenciales Postsinápticos Excitadores/fisiología , Lateralidad Funcional , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Fitohemaglutininas , Ratas , Ratas Wistar , Sinapsis/ultraestructura , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA