Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2791: 97-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532096

RESUMEN

Knowledge of detailed reproductive biology of cultivated species is important as requirements for fruit and seed production allow the development of effective management strategies and a sustainable use. Embryological processes of common buckwheat (Fagopyrum esculentum Moench) are difficult to interpret due to the influence of genetic determinants, i.e., dimorphic heterostyly resulting in the production of long- and short-styled flowers, and environmental predisposition, i.e., sensitivity of ovules to thermal stress. Furthermore, the situation is complicated by overproduction of flowers and depletion of resources as the plant ages. Herein we provide protocols that allow to visualize both basic and more specific embryological features and also disturbances in sexual reproduction of common buckwheat resulting from external and internal factors. All stages of plant material fixation, preparation, staining, and observation are described and explained in detail. Technical tips and pictures of properly prepared microscopic sections are also provided.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Flores/genética , Reproducción , Genotipo , Semillas
2.
Methods Mol Biol ; 2791: 107-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532097

RESUMEN

The protein extraction method based on the phenol solution and combined with protein precipitation with ammonium acetate in methanol and purification in the same solution, and additionally in acetone and ethanol, is recommended for proteomic studies of plant tissues. The obtained protein samples do not require additional nucleic acid digestion and removal of interfering contaminations. The presented protocol was used to analyze the proteome of common buckwheat flowers and leaves.


Asunto(s)
Fenol , Proteínas de Plantas , Proteómica/métodos , Plantas , Fenoles , Hojas de la Planta , Electroforesis en Gel Bidimensional/métodos
3.
Methods Mol Biol ; 2791: 133-137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532101

RESUMEN

Light is one of the main signals detected by plants that influence plant growth, development, and function. The light features that influence plants are the photoperiod, light intensity, and spectral composition. Manipulating light intensity and spectrum to obtain better plant growth and quality has become a popular research object in recent years. Here we describe the usage of the spectrometer Lighting Passport Pro to determine the impact of light intensity and share of individual waves in its spectrum in environment-controlled plant production systems on the growth, development, and soluble carbohydrate and phenolic synthesis of common buckwheat.


Asunto(s)
Fagopyrum , Fotosíntesis , Desarrollo de la Planta , Luz
4.
Methods Mol Biol ; 2791: 121-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532099

RESUMEN

The chlorophyll a fluorescence measurement method is used to determine the efficiency of the photosynthetic apparatus and to assess the physiological state of photosynthetic organisms. The measurement is simple, fast, and noninvasive. It is a precise tool to study photosynthesis response under stress conditions or to assess the impact of specific environmental factors on plants. Here we describe the usage of this method in environmental-controlled plant production systems differing in temperature or light source on the growth and development of common buckwheat.


Asunto(s)
Clorofila , Pisum sativum , Clorofila A , Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis/fisiología , Cinética , Hojas de la Planta/metabolismo
5.
Methods Mol Biol ; 2791: 113-119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532098

RESUMEN

Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.


Asunto(s)
Fagopyrum , Proteoma , Proteoma/análisis , Proteómica , Focalización Isoeléctrica/métodos , Hojas de la Planta/química , Flores , Electroforesis en Gel Bidimensional/métodos , Geles , Concentración de Iones de Hidrógeno
6.
Methods Mol Biol ; 2791: 127-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532100

RESUMEN

Ranges of portable systems to measure leaf gas-exchange parameters are available. They allow real-time measurements of the photosynthesis rate (A), transpiration rate (E), stomatal conductance (gs), and intercellular CO2 concentration (Ci). Photosynthetic CO2 uptake is one of the most frequently studied plant physiological processes. The measurement is precise, simple, and noninvasive to perform in vivo. We describe the use of this method in environmental-controlled plant production systems at different temperatures on the growth and development of common buckwheat.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Dióxido de Carbono , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Plantas
7.
Sci Rep ; 13(1): 16022, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749231

RESUMEN

Common buckwheat has a complicated flowering biology. It is characterized by a strong self-incompatibility resulting from heterostyly, i.e. the occurrence of two types of flowers: Pin and Thrum, differing in the length of pistils and stamens. Fertilization occurs only as a result of cross-pollination between these morphs. Suspicions exist that the disturbed ratio between plants producing Pin and Thrum flowers (with the latter type generating more seeds) causes low seed yield. The aim of the study was to analyze: (1) the ratio between plants with Pin and Thrum morphs, (2) flower and seed production, as well as abortion of flowers, (3) the composition of nectar collected at an early flowering stage and during full flowering. The study was performed under semi-controlled and field conditions on six Polish accessions. The results indicated that under semi-controlled conditions the Pin-to-Thrum ratio was indeed disproportionate; such a phenomenon is called anisoplethy. In the field, however, the Pin-to-Thrum ratio was well-balanced (isoplethy). The plants with both morphs aborted a similar percentage of flowers and produced a comparable number of empty seeds. The number of flowers, their abortion, and ripe seed production were independent of flower type, however, they were genotypically controlled. A strong correlation between the number of flowers produced by a plant, flower abortion and the number of empty seeds was found. The percentage of aborted flowers correlated positively with the weight of ripe seeds. Nectar composition was similar for all buckwheat genotypes, but we found some differences in the amount of individual sugars depending on the blooming stage. In the majority of accessions, the nectar produced at the early blooming stage was characterized by a greater mass and volume, and contained more individual sugars than at the full-flowering stage.


Asunto(s)
Fagopyrum , Néctar de las Plantas , Fagopyrum/genética , Flores/genética , Genotipo , Azúcares
8.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629032

RESUMEN

Common buckwheat is a valuable plant producing seeds containing a number of health-promoting compounds and elements. Buckwheat does not contain gluten and is characterized by an excellent composition of amino acids. This species is also a melliferous plant. Despite many advantages, the area of buckwheat cultivation is decreasing due to unstable yields. One of the reasons for low seed yield is its sensitivity to drought, high temperatures, and assimilate deficiencies. These factors have a significant impact on the nectar composition, which is important for visiting pollinators and thus for pollination. High temperature during flowering increases the degeneration of embryo sacs and embryos, which is high anyway (genetic determination) in common buckwheat. This phenomenon seems to be unbreakable by breeding methods. The authors aimed to determine whether stimulants commonly used in agriculture could increase the seed yield of this plant species. The aim of the work was to choose from eight different stimulants the most effective one that would improve the seed yield of two accessions of common buckwheat by increasing the efficiency of nectar production and reducing the number of empty seeds. The plants were sprayed at either the beginning of flowering or at full bloom. The content of sugars and amino acids was higher in the nectar produced at the beginning of flowering. The nectar of both lines included also polyamines. The level of sugars in the nectar increased mainly after spraying with the stimulants in the second phase of flowering. A positive correlation between the total amount of sugars and amino acids in the nectar and seed yield was found. All the stimulants used reduced the number of empty seeds in both accessions. Seed production in the PA15 line increased significantly under the influence of all stimulants used at the beginning of flowering, and the most effective were ASAHI SL and TYTANIT®.


Asunto(s)
Antifibrinolíticos , Productos Biológicos , Estimulantes del Sistema Nervioso Central , Fagopyrum , Néctar de las Plantas , Fitomejoramiento , Semillas , Aminoácidos
9.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955532

RESUMEN

The area of farming lands affected by increasing soil salinity is growing significantly worldwide. For this reason, breeding works are conducted to improve the salinity tolerance of important crop species. The goal of the present study was to indicate physiological or biochemical parameters characterizing three durum wheat accessions with various tolerance to salinity. The study was carried out on germinating seeds and mature plants of a Polish SMH87 line, an Australian cultivar 'Tamaroi' (salt-sensitive), and the BC5Nax2 line (salt-tolerant) exposed to 0-150 mM NaCl. Germination parameters, electrolyte leakage (EL), and salt susceptibility index were determined in the germinating caryopses, whereas photosynthetic parameters, carbohydrate and phenolic content, antioxidant activity as well as yield were measured in fully developed plants. The parameters that most differentiated the examined accessions in the germination phase were the percentage of germinating seeds (PGS) and germination vigor (Vi). In the fully developed plants, parameters included whether the plants had the maximum efficiency of the water-splitting reaction on the donor side of photosystem II (PSII)-Fv/F0, energy dissipation from PSII-DIo/CSm, and the content of photosynthetic pigments and hydrogen peroxide, which differentiated studied genotypes in terms of salinity tolerance degree. Salinity has a negative impact on grain yield by reducing the number of seeds per spike and the mass of one thousand seeds (MTS), which can be used as the most suitable parameter for determining tolerance to salinity stress. The most salt-tolerant BC5Nax2 line was characterized by the highest PGS, and Vi for NaCl concentration of 100-150 mM, content of chlorophyll a, b, carotenoids, and also MTS at all applied salt concentrations as compared with the other accessions. The most salt-sensitive cv. 'Tamaroi' demonstrated higher H2O2 concentration which proves considerable oxidative damage caused by salinity stress. Mentioned parameters can be helpful for breeders in the selection of genotypes the most resistant to this stress.


Asunto(s)
Salinidad , Triticum , Australia , Clorofila A , Genotipo , Peróxido de Hidrógeno , Complejo de Proteína del Fotosistema II , Fitomejoramiento , Cloruro de Sodio/farmacología , Estrés Fisiológico , Triticum/genética
10.
Sci Rep ; 12(1): 257, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997114

RESUMEN

Light-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.


Asunto(s)
Producción de Cultivos , Productos Agrícolas/efectos de la radiación , Fagopyrum/efectos de la radiación , Luz , Iluminación/instrumentación , Fotosíntesis/efectos de la radiación , Metabolismo Secundario/efectos de la radiación , Biomasa , Clorofila A/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Cinética , Fenoles/metabolismo
11.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34299055

RESUMEN

Fusarium culmorum is a worldwide, soil-borne plant pathogen. It causes diseases of cereals, reduces their yield, and fills the grain with toxins. The main direction of modern breeding is to select wheat genotypes the most resistant to Fusarium diseases. This study uses seedlings and plants at the anthesis stage to analyze total soluble carbohydrates, total and cell-wall bound phenolics, chlorophyll content, antioxidant activity, hydrogen peroxide content, mycotoxin accumulation, visual symptoms of the disease, and Fusarium head blight index (FHBi). These results determine the resistance of three durum wheat accessions. We identify physiological or biochemical markers of durum wheat resistance to F. culmorum. Our results confirm correlations between FHBi and mycotoxin accumulation in the grain, which results in grain yield decrease. The degree of spike infection (FHBi) may indicate accumulation mainly of deoxynivalenol and nivalenol in the grain. High catalase activity in the infected leaves could be considered a biochemical marker of durum sensitivity to this fungus. These findings allowed us to formulate a strategy for rapid evaluation of the disease severity and the selection of plants with higher level, or resistance to F. culmorum infection.


Asunto(s)
Biomarcadores/metabolismo , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Plantones/fisiología , Tricotecenos/metabolismo , Triticum/fisiología , Genotipo , Plantones/microbiología , Triticum/clasificación , Triticum/genética , Triticum/microbiología
12.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800930

RESUMEN

Common buckwheat (Fagopyrum esculentum Moench), a pseudocereal crop, produces a large number of flowers, but this does not guarantee high seed yields. This species demonstrates strong abortion of flowers and embryos. High temperatures during the generative growth phase result in an increase in the degeneration of embryo sacs. The aim of this study was to investigate proteomic changes in flowers and leaves of two common buckwheat accessions with different degrees of heat tolerance, Panda and PA15. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyze the proteome profiles. Analyses were conducted for flower buds, open flowers capable of fertilization, and wilted flowers, as well as donor leaves, i.e., those growing closest to the inflorescences. High temperature up-regulated the expression of 182 proteins. The proteomic response to heat stress differed between the accessions and among their organs. In the Panda accession, we observed a change in abundance of 17, 13, 28, and 11 proteins, in buds, open and wilted flowers, and leaves, respectively. However, in the PA15 accession there were 34, 21, 63, and 21 such proteins, respectively. Fifteen heat-affected proteins were common to both accessions. The indole-3-glycerol phosphate synthase chloroplastic-like isoform X2 accumulated in the open flowers of the heat-sensitive cultivar Panda in response to high temperature, and may be a candidate protein as a marker of heat sensitivity in buckwheat plants.


Asunto(s)
Fagopyrum/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteoma , Termotolerancia/genética , Electroforesis en Gel Bidimensional , Fagopyrum/embriología , Fagopyrum/genética , Fagopyrum/crecimiento & desarrollo , Respuesta al Choque Térmico/genética , Calor , Indol-3-Glicerolfosfato Sintasa/biosíntesis , Indol-3-Glicerolfosfato Sintasa/genética , Metionina Adenosiltransferasa/biosíntesis , Metionina Adenosiltransferasa/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Espectrometría de Masas en Tándem , Regulación hacia Arriba
13.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255746

RESUMEN

Despite abundant flowering throughout the season, common buckwheat develops a very low number of kernels probably due to competition for assimilates. We hypothesized that plants with a shorter flowering period may give a higher seed yield. To verify the hypothesis, we studied nutrient stress in vitro and in planta and analyzed different embryological and yield parameters, including hormone profile in the flowers. In vitro cultivated flowers on media with strongly reduced nutrient content demonstrated a drastic increase in degenerated embryo sacs. In in planta experiments, where 50% or 75% of flowers or all lateral ramifications were removed, the reduction of the flower competition by half turned out to be the most promising treatment for improving yield. This treatment increased the frequency of properly developed embryo sacs, the average number of mature seeds per plant, and their mass. Strong seed compensation under 50% inflorescence removal could result from increased production of salicylic and jasmonic acid that both favor more effective pollinator attraction. Plants in single-shoot cultivation finished their vegetation earlier, and they demonstrated greater single seed mass per plant than in control. This result suggests that plants of common buckwheat with shorter blooming period could deliver higher seed yield.


Asunto(s)
Fagopyrum/genética , Flores/genética , Reproducción/genética , Semillas/genética , Fagopyrum/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Polinización/genética , Estaciones del Año , Semillas/crecimiento & desarrollo
14.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959807

RESUMEN

Common buckwheat is a valuable crop, mainly due to the beneficial chemical composition of its seeds. However, buckwheat cultivation is limited because of unstable seed yield. The most important reasons for the low yield include embryo and flower abortion. The aim of this work is to verify whether high temperature affects embryological development in this plant species. The experiment was conducted on plants of a Polish cultivar 'Panda' and strain PA15, in which the percentage of degenerating embryo sacs was previously determined and amounted to 32% and 10%, respectively. The plants were cultivated in phytotronic conditions at 20 °C (control), and 30 °C (thermal stress). The embryological processes and hormonal profiles in flowers at various developmental stages (buds, open flowers, and wilted flowers) and in donor leaves were analyzed in two-month-old plants. Significant effects of thermal stress on the defective development of female gametophytes and hormone content in flowers and leaves were observed. Ovules were much more sensitive to high temperature than pollen grains in both genotypes. Pollen viability remained unaffected at 30 °C in both genotypes. The effect of temperature on female gametophyte development was visible in cv. Panda but not in PA15 buds. A drastic reduction in the number of properly developed embryo sacs was clear in open flowers at 30 °C in both genotypes. A considerable increase in abscisic acid in open flowers ready for fertilization may serve as a signal inducing flower senescence observed in the next few days. Based on embryological analyses and hormone profiles in flowers, we conclude that cv. 'Panda' is more sensitive to thermal stress than strain PA15, mainly due to a much earlier response to thermal stress involving impairment of embryological processes already in the flower buds.


Asunto(s)
Fagopyrum/embriología , Fagopyrum/metabolismo , Flores/embriología , Flores/metabolismo , Calor , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/embriología , Hojas de la Planta/metabolismo , Óvulo Vegetal/citología , Óvulo Vegetal/embriología , Polen/embriología
15.
Int J Mol Sci ; 19(8)2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115849

RESUMEN

In this article, the effects of cold on the development of Lupine angustifolius and the possibility of mitigating it, via seed hydropriming or pre-treatment with butenolide (10-6 M⁻10-4 M), are investigated in two cultivars, differing in their ability to germinate at low temperature. Physiological background of plant development after cold stress was investigated in imbibed seeds. For the first four weeks, the seedlings grew at 7 °C or 13 °C. Seeds well germinating at 7 °C demonstrated higher activity of α-amylase and higher levels of gibberellins, IAA and kinetin. Germination ability at low temperature correlated with dehydrogenase activity and membrane permeability. Seed pre-treatment improved germination at low temperature by decreasing abscisic acid content. Seed hydropriming alleviated cold effects on plant development rate and yield, while butenolide accelerated vegetative development but delayed the generative phase. Potential seed yield may be predicted based on the seed germination vigour and the photosynthetic efficiency measured before flowering.


Asunto(s)
4-Butirolactona/análogos & derivados , Frío , Lupinus/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Semillas/fisiología , 4-Butirolactona/farmacología , Biomasa , Clorofila/metabolismo , Clorofila A , Electrólitos/metabolismo , Fluorescencia , Germinación/efectos de los fármacos , Cinética , Lupinus/efectos de los fármacos , Lupinus/enzimología , Oxidorreductasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/efectos de los fármacos , Semillas/efectos de los fármacos , Temperatura , Factores de Tiempo , alfa-Amilasas/metabolismo
16.
Int J Mol Sci ; 19(4)2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29587459

RESUMEN

Seed imbibition under cold temperature is dangerous when dry seeds have relatively low water content. The aim of this study was to investigate germination of 20 lines/cultivars of narrow-leaf lupine at 7 °C (cold) and 13 °C (control) under the influence of smoke water and following seed hydropriming for 3 h at 20 °C. The efficacy of individual treatments was examined with regard to seed protection during low-temperature germination. Based on seed germination, vigour at cold was evaluated four days after sowing by means of hypocotyl length, the studied lines/cultivars were divided into three groups with low, high and very high germination rates. Germination vigour correlated with cell membrane permeability, dehydrogenase activity and abscisic acid (ABA) content and was analysed in the seeds one day after sowing. Gibberellin content did not correlate with germination vigour. The seeds of weakly germinating lines/cultivars had the highest cell permeability and ABA content as well as the lowest amylolytic activity at both studied temperatures. Additionally, the vigour of weakly germinating seeds at 7 °C correlated with dehydrogenase activity. Three-hour hydropriming was the most effective for seed germination under cold due to reduced cell membrane permeability and ABA level. Stimulating effects of smoke water on germination under cold could be explained by enhanced dehydrogenase activity.


Asunto(s)
Adaptación Fisiológica , Germinación , Lupinus/fisiología , Ácido Abscísico/farmacología , Permeabilidad de la Membrana Celular , Frío , Giberelinas/metabolismo , Lupinus/metabolismo , Agua
17.
Plant Physiol Biochem ; 123: 43-53, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29223067

RESUMEN

The potential of resistance to Microdochium nivale is still not recognized for numerous plant species. The forage grasses of Lolium-Festuca complex are important for grass-biomass production in the temperate regions. Lolium multiflorum is a grass with a high forage quality and productivity but also a relatively low resistance to M. nivale. On the contrary, F. arundinacea has a higher potential of resistance but simultaneously a significantly lower forage quality. These two species cross with each other and the intergeneric hybrids possess complementary characters of both genera. Herein, for the first time, we perform the research on L. multiflorum/F. arundinacea introgression forms to decipher mechanisms of resistance to M. nivale in that group of plants. Two forms with distinct levels of resistance were used as models in cytogenetic and biochemical studies. The resistant plant was shown to be a tetraploid with 28 L. multiflorum chromosomes, including one with three F. arundinacea introgressions. The susceptible introgression form revealed the unbalanced genomic structure and only 25 chromosomes. Twenty four chromosomes were shown to be L. multiflorum chromosomes, including one chromosome with F. arundinacea segment. One Festuca chromosome with additional two interstitial F. arundinacea segments, was also revealed in the susceptible form. The selected introgression forms differed in the accumulation profiles of total soluble carbohydrates, phytohormones, and phenolics in the leaf and crown tissue under the control and infection conditions. The higher amount of carbohydrates and salicylic acid in the leaves and crowns as well as a lower amount of abscisic acid in both studied organs and jasmonic acid in the crowns, were shown to be crucial for the expression of resistance to M. nivale in the analyzed hybrids.


Asunto(s)
Ascomicetos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Festuca , Lolium , Enfermedades de las Plantas , Festuca/genética , Festuca/microbiología , Lolium/genética , Lolium/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
18.
Plant Reprod ; 26(3): 297-307, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23824237

RESUMEN

Miscanthus × giganteus is a popular energy crop, which due to its hybrid origin is only vegetatively reproduced. Asexual embryogenesis in anther and microspore culture leading to double haploids production could allow to regain the ability for sexual reproduction and to increase the biodiversity of the species. Therefore, the goal of this paper was to investigate the requirements of androgenesis in Miscanthus. The standard protocols used for monocotyledonous plants were applied with many modifications regarding the developmental stage of the explants at the time of culture initiation, stress treatment applied to panicles and isolated anthers as well as various chemical and physical parameters of in vitro culture conditions. Our results indicated that the induction of androgenesis in M. × giganteus is possible. However, the very low efficiency of the process and the lack of regeneration ability of the androgenic structures presently prevent the use of this technique.


Asunto(s)
Poaceae/embriología , Meiosis/genética , Meiosis/fisiología , Poaceae/citología , Poaceae/metabolismo , Polen/citología , Polen/metabolismo , Polen/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA