Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Comput Toxicol ; 21: 100195, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35211660

RESUMEN

The adverse outcome pathway (AOP) is a conceptual construct that facilitates organisation and interpretation of mechanistic data representing multiple biological levels and deriving from a range of methodological approaches including in silico, in vitro and in vivo assays. AOPs are playing an increasingly important role in the chemical safety assessment paradigm and quantification of AOPs is an important step towards a more reliable prediction of chemically induced adverse effects. Modelling methodologies require the identification, extraction and use of reliable data and information to support the inclusion of quantitative considerations in AOP development. An extensive and growing range of digital resources are available to support the modelling of quantitative AOPs, providing a wide range of information, but also requiring guidance for their practical application. A framework for qAOP development is proposed based on feedback from a group of experts and three qAOP case studies. The proposed framework provides a harmonised approach for both regulators and scientists working in this area.

2.
Comput Toxicol ; 202021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35340402

RESUMEN

Hepatotoxicity is one of the most frequently observed adverse effects resulting from exposure to a xenobiotic. For example, in pharmaceutical research and development it is one of the major reasons for drug withdrawals, clinical failures, and discontinuation of drug candidates. The development of faster and cheaper methods to assess hepatotoxicity that are both more sustainable and more informative is critically needed. The biological mechanisms and processes underpinning hepatotoxicity are summarized and experimental approaches to support the prediction of hepatotoxicity are described, including toxicokinetic considerations. The paper describes the increasingly important role of in silico approaches and highlights challenges to the adoption of these methods including the lack of a commonly agreed upon protocol for performing such an assessment and the need for in silico solutions that take dose into consideration. A proposed framework for the integration of in silico and experimental information is provided along with a case study describing how computational methods have been used to successfully respond to a regulatory question concerning non-genotoxic impurities in chemically synthesized pharmaceuticals.

3.
Comput Toxicol ; 202021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35721273

RESUMEN

The kidneys, heart and lungs are vital organ systems evaluated as part of acute or chronic toxicity assessments. New methodologies are being developed to predict these adverse effects based on in vitro and in silico approaches. This paper reviews the current state of the art in predicting these organ toxicities. It outlines the biological basis, processes and endpoints for kidney toxicity, pulmonary toxicity, respiratory irritation and sensitization as well as functional and structural cardiac toxicities. The review also covers current experimental approaches, including off-target panels from secondary pharmacology batteries. Current in silico approaches for prediction of these effects and mechanisms are described as well as obstacles to the use of in silico methods. Ultimately, a commonly accepted protocol for performing such assessment would be a valuable resource to expand the use of such approaches across different regulatory and industrial applications. However, a number of factors impede their widespread deployment including a lack of a comprehensive mechanistic understanding, limited in vitro testing approaches and limited in vivo databases suitable for modeling, a limited understanding of how to incorporate absorption, distribution, metabolism, and excretion (ADME) considerations into the overall process, a lack of in silico models designed to predict a safe dose and an accepted framework for organizing the key characteristics of these organ toxicants.

4.
Environ Int ; 143: 105978, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32763630

RESUMEN

Human biomonitoring (HBM) data can provide insight into co-exposure patterns resulting from exposure to multiple chemicals from various sources and over time. Therefore, such data are particularly valuable for assessing potential risks from combined exposure to multiple chemicals. One way to interpret HBM data is establishing safe levels in blood or urine, called Biomonitoring Equivalents (BE) or HBM health based guidance values (HBM-HBGV). These can be derived by converting established external reference values, such as tolerable daily intake (TDI) values. HBM-HBGV or BE values are so far agreed only for a very limited number of chemicals. These values can be established using physiologically based kinetic (PBK) modelling, usually requiring substance specific models and the collection of many input parameters which are often not available or difficult to find in the literature. The aim of this study was to investigate the suitability and limitations of generic PBK models in deriving BE values for several compounds with a view to facilitating the use of HBM data in the assessment of chemical mixtures at a screening level. The focus was on testing the methodology with two generic models, the IndusChemFate tool and High-Throughput Toxicokinetics package, for two different classes of compounds, phenols and phthalates. HBM data on Danish children and on Norwegian mothers and children were used to evaluate the quality of the predictions and to illustrate, by means of a case study, the overall approach of applying PBK models to chemical classes with HBM data in the context of chemical mixture risk assessment. Application of PBK models provides a better understanding and interpretation of HBM data. However, the study shows that establishing safety threshold levels in urine is a difficult and complex task. The approach might be more straightforward for more persistent chemicals that are analysed as parent compounds in blood but high uncertainties have to be considered around simulated metabolite concentrations in urine. Refining the models may reduce these uncertainties and improve predictions. Based on the experience gained with this study, the performance of the models for other chemicals could be investigated, to improve the accuracy of the simulations.


Asunto(s)
Monitoreo Biológico , Monitoreo del Ambiente , Niño , Humanos , Nivel sin Efectos Adversos Observados , Valores de Referencia , Medición de Riesgo
5.
Expert Opin Drug Metab Toxicol ; 14(12): 1225-1253, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30345815

RESUMEN

INTRODUCTION: The kidney is a major target for toxicity elicited by pharmaceuticals and environmental pollutants. Standard testing which often does not investigate underlying mechanisms has proven not to be an adequate hazard assessment approach. As such, there is an opportunity for the application of computational approaches that utilize multiscale data based on the Adverse Outcome Pathway (AOP) paradigm, coupled with an understanding of the chemistry underpinning the molecular initiating event (MIE) to provide a deep understanding of how structural fragments of molecules relate to specific mechanisms of nephrotoxicity. Aims covered: The aim of this investigation was to review the current scientific landscape related to computational methods, including mechanistic data, AOPs, publicly available knowledge bases and current in silico models, for the assessment of pharmaceuticals and other chemicals with regard to their potential to elicit nephrotoxicity. A list of over 250 nephrotoxicants enriched with, where possible, mechanistic and AOP-derived understanding was compiled. Expert opinion: Whilst little mechanistic evidence has been translated into AOPs, this review identified a number of data sources of in vitro, in vivo, and human data that may assist in the development of in silico models which in turn may shed light on the interrelationships between nephrotoxicity mechanisms.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Contaminantes Ambientales/efectos adversos , Riñón/efectos de los fármacos , Animales , Simulación por Computador , Contaminantes Ambientales/administración & dosificación , Humanos , Almacenamiento y Recuperación de la Información , Riñón/patología , Medición de Riesgo/métodos
6.
Toxicology ; 347-349: 1-5, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26945727

RESUMEN

A latency period preceding neurotoxicity is a common characteristic in the dose-response relationship induced by organic mercury. Latency periods have typically been observed with genotoxicants in carcinogenesis, with cancer being manifested a long time after the initiating event. These observations indicate that even a very small dose may cause extensive adverse effects later in life, so the toxicity of the genotoxic compound is dose and time-dependent. In children, methylmercury exposure during pregnancy (in utero) has been associated with delays in reaching developmental milestones (e.g., age at first walking) and decreases in intelligence, increasing in severity with increasing exposure. Ethylmercury exposure from thimerosal in some vaccines has been associated, in some studies, with autism and other neurological disorders in children. In this paper, we have examined whether dose-response data from in vitro and in vivo organic mercury toxicity studies fit the Druckrey-Küpfmüller equation c·t(n)=constant (c=exposure concentration, t=latency period), first established for genotoxic carcinogens, and whether or not irreversible effects are enhanced by time of exposure (n≥1), or else toxic effects are dose-dependent while time has only minor influence on the adverse outcome (n<1). The mode of action underlying time-dependent toxicity is irreversible binding to critical receptors causing adverse and cumulative effects. The results indicate that the Druckrey-Küpfmüller equation describes well the dose-response characteristics of organic mercury induced neurotoxic effects. This amounts to a paradigm shift in chemical risk assessment of mercurial compounds and highlights that it is vital to perform toxicity testing geared to investigate time-dependent effects.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Compuestos de Metilmercurio/toxicidad , Síndromes de Neurotoxicidad , Animales , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Mercurio/administración & dosificación , Mercurio/metabolismo , Mercurio/toxicidad , Compuestos de Metilmercurio/administración & dosificación , Compuestos de Metilmercurio/metabolismo , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Embarazo , Timerosal/administración & dosificación , Timerosal/metabolismo , Timerosal/toxicidad , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA