Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Artif Organs ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193869

RESUMEN

INTRODUCTION: A growing interest in renal normothermic machine perfusion (NMP) has resulted in more clinically available perfusion devices. While all perfusion systems have the same aim, there are significant differences in their circuits, pumps, sensors, and software. Therefore, our objective was to assess the impact of different perfusion protocols and devices on kidney function and perfusion parameters during NMP. METHODS: Porcine kidneys were subjected to 30 min of warm ischemia, 24 h of static cold storage, and subsequently perfused for 6 h using (1) the Kidney Assist (KA) machine with a pressure of 75 mm Hg, (2) the KA device incorporating several adjustments and a pressure of 85 mm Hg (modified KA), or (3) the Perlife (PL) perfusion device (n = 4). Consecutively, discarded human kidneys were perfused using the KA or modified KA (n = 3) protocol. RESULTS: The PL group quickly reached the device's upper flow limit and consequently received a significantly lower pressure compared to the KA groups. The arterial pO2 was significantly lower in the PL group. Yet, hemoglobin concentration increased over time, and oxygen consumption was significantly higher compared to the KA groups. Fractional sodium excretion was significantly lower in the PL group. Tissue ATP levels, urine production, and creatinine clearance rates did not differ between groups. In human kidneys, the modified KA group showed significantly lower vascular resistance, higher oxygen delivery, and lower levels of lactate in the perfusate compared to the KA group. CONCLUSIONS: This study shows that perfusion characteristics and kidney function are significantly influenced by the perfusion protocol and the device and its settings during normothermic machine perfusion and therefore should be interpreted with caution.

2.
Clin Proteomics ; 21(1): 54, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154002

RESUMEN

BACKGROUND: Proteomics and metabolomics offer substantial potential for advancing kidney transplant research by providing versatile opportunities for gaining insights into the biomolecular processes occurring in donors, recipients, and grafts. To achieve this, adequate quality and numbers of biological samples are required. Whilst access to donor samples is facilitated by initiatives such as the QUOD biobank, an adequately powered biobank allowing exploration of recipient-related aspects in long-term transplant outcomes is missing. Rich, yet unverified resources of recipient material are the serum repositories present in the immunological laboratories of kidney transplant centers that prospectively collect recipient sera for immunological monitoring. However, it is yet unsure whether these samples are also suitable for -omics applications, since such clinical samples are collected and stored by individual centers using non-uniform protocols and undergo an undocumented number of freeze-thaw cycles. Whilst these handling and storage aspects may affect individual proteins and metabolites, it was reasoned that incidental handling/storage artifacts will have a limited effect on a theoretical network (pathway) analysis. To test the potential of such long-term stored clinical serum samples for pathway profiling, we submitted these samples to discovery proteomics and metabolomics. METHODS: A mass spectrometry-based shotgun discovery approach was used to obtain an overview of proteins and metabolites in clinical serum samples from the immunological laboratories of the Dutch PROCARE consortium. Parallel analyses were performed with material from the strictly protocolized QUOD biobank. RESULTS: Following metabolomics, more than 800 compounds could be identified in both sample groups, of which 163 endogenous metabolites were found in samples from both biorepositories. Proteomics yielded more than 600 proteins in both groups. Despite the higher prevalence of fragments in the clinical, non-uniformly collected samples compared to the biobanked ones (42.5% vs 26.5% of their proteomes, respectively), these fragments could still be connected to their parent proteins. Next, the proteomic and metabolomic profiles were successfully mapped onto theoretical pathways through integrated pathway analysis, which showed significant enrichment of 79 pathways. CONCLUSIONS: This feasibility study demonstrated that long-term stored serum samples from clinical biorepositories can be used for qualitative proteomic and metabolomic pathway analysis, a notion with far-reaching implications for all biomedical, long-term outcome-dependent research questions and studies focusing on rare events.

3.
Front Transplant ; 3: 1305468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993786

RESUMEN

Two common obstacles limiting the performance of data-driven algorithms in digital histopathology classification tasks are the lack of expert annotations and the narrow diversity of datasets. Multi-instance learning (MIL) can address the former challenge for the analysis of whole slide images (WSI), but performance is often inferior to full supervision. We show that the inclusion of weak annotations can significantly enhance the effectiveness of MIL while keeping the approach scalable. An analysis framework was developed to process periodic acid-Schiff (PAS) and Sirius Red (SR) slides of renal biopsies. The workflow segments tissues into coarse tissue classes. Handcrafted and deep features were extracted from these tissues and combined using a soft attention model to predict several slide-level labels: delayed graft function (DGF), acute tubular injury (ATI), and Remuzzi grade components. A tissue segmentation quality metric was also developed to reduce the adverse impact of poorly segmented instances. The soft attention model was trained using 5-fold cross-validation on a mixed dataset and tested on the QUOD dataset containing n = 373 PAS and n = 195 SR biopsies. The average ROC-AUC over different prediction tasks was found to be 0.598 ± 0.011 , significantly higher than using only ResNet50 ( 0.545 ± 0.012 ), only handcrafted features ( 0.542 ± 0.011 ), and the baseline ( 0.532 ± 0.012 ) of state-of-the-art performance. In conjunction with soft attention, weighting tissues by segmentation quality has led to further improvement ( A U C = 0.618 ± 0.010 ) . Using an intuitive visualisation scheme, we show that our approach may also be used to support clinical decision making as it allows pinpointing individual tissues relevant to the predictions.

4.
J Surg Res ; 301: 248-258, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970873

RESUMEN

INTRODUCTION: Normothermic machine perfusion (NMP) of donor kidneys provides the opportunity to assess and improve organ viability prior to transplantation. This study explored the necessity of an oxygen carrier during NMP and whether the hemoglobin-based oxygen carrier (HBOC-201) is a suitable alternative to red blood cells (RBCs). METHODS: Porcine kidneys were perfused with a perfusion solution containing either no-oxygen carrier, RBCs, or HBOC-201 for 360 min at 37°C. RESULTS: Renal flow and resistance did not differ significantly between groups. NMP without an oxygen carrier showed lower oxygen consumption with higher lactate and aspartate aminotransferase levels, indicating that the use of an oxygen carrier is necessary for NMP. Cumulative urine production and creatinine clearance in the RBC group were significantly higher than in the HBOC-201 group. Oxygen consumption, injury markers, and histology did not differ significantly between these two groups. However, methemoglobin levels increased to 45% after 360 min in the HBOC-201 group. CONCLUSIONS: We conclude that HBOC-201 could be used as an alternative for RBCs, but accumulating methemoglobin levels during our perfusions indicated that HBOC-201 is probably less suitable for prolonged NMP. Perfusion with RBCs, compared to HBOC-201, resulted in more favorable renal function during NMP.

5.
Transplantation ; 108(4): 923-929, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38192028

RESUMEN

BACKGROUND: Solid organ transplantation is a cost-effective treatment for end-stage organ failure. Organ donation after brain death is an important source of transplanted organs. Data are limited on the effects of brain injury or donor management on grafts. The consensus view has been that brain death creates a progressively proinflammatory environment. We aimed to investigate time-course changes across a range of cytokines in a donation after brain death cohort of donors who died of intracranial hemorrhage without any other systemic source of inflammation. METHODS: A donor cohort was defined using the UK Quality in Organ Donation biobank. Serum levels of proteins involved in proinflammatory and brain injury pathways (tumor necrosis factor-alpha, interleukin-6, complement C5a, neuron-specific enolase, and glial fibrillary acidic protein) were measured from admission to organ recovery. Moving median analysis was used to combine donor trajectories and delineate a time-course. RESULTS: A cohort of 27 donors with brain death duration between 10 and 30 h was created, with 24 donors contributing to the time-course analysis. We observed no increase in tumor necrosis factor-alpha or interleukin-6 throughout the donor management period. Neuronal injury marker and complement C5a remain high from admission to organ recovery, whereas glial fibrillary acidic protein rises around the confirmation of brain death. CONCLUSIONS: We found no evidence of a progressive rise of proinflammatory mediators with prolonged duration of brain death, questioning the hypothesis of a progressively proinflammatory environment. Furthermore, the proposed approach allows us to study chronological changes and identify biomarkers or target pathways when logistical or ethical considerations limit sample availability.


Asunto(s)
Lesiones Encefálicas , Obtención de Tejidos y Órganos , Humanos , Muerte Encefálica/patología , Interleucina-6 , Proteína Ácida Fibrilar de la Glía , Factor de Necrosis Tumoral alfa , Síndrome de Liberación de Citoquinas , Donantes de Tejidos , Encéfalo/patología , Complemento C5a
6.
Am J Transplant ; 24(7): 1172-1179, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38215981

RESUMEN

Renal ex vivo normothermic machine perfusion (NMP) is under development as an assessment tool for high-risk kidney grafts and as a means of achieving more physiologically accurate organ preservation. On-going hemolysis has been reported during NMP, as this technique relies on red blood cells for oxygen delivery. In this study, we confirm the occurrence of progressive hemolysis during 6-hour kidney NMP. NMP-associated erythrostasis in the glomeruli and in peri-glomerular vascular networks points to an interaction between the red blood cells and the graft. Continuous hemolysis resulted in prooxidative changes in the perfusate, which could be quenched by addition of fresh frozen plasma. In a cell-based system, this hemolysis induced redox stress and exhibited toxic effects at high concentrations. These findings highlight the need for a more refined oxygen carrier in the context of renal NMP.


Asunto(s)
Eritrocitos , Trasplante de Riñón , Preservación de Órganos , Oxígeno , Perfusión , Eritrocitos/metabolismo , Preservación de Órganos/métodos , Oxígeno/metabolismo , Humanos , Hemólisis , Animales , Masculino , Riñón/metabolismo
7.
Front Nephrol ; 3: 1236520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675353

RESUMEN

Background: Patient Blood Management (PBM), endorsed by the World Health Organisation is an evidence-based, multi-disciplinary approach to minimise inappropriate blood product transfusions. Kidney transplantation presents a particular challenge to PBM, as comprehensive evidence of the risk of transfusion is lacking. The aim of this study is to investigate the prevalence of post-transplant blood transfusions across multiple centres, to analyse risk factors for transfusion and to compare transplant outcomes by transfusion status. Methods: This analysis was co-ordinated via the UK Transplant Registry within NHS Blood and Transplant (NHSBT), and was performed across 4 centres. Patients who had received a kidney transplant over a 1-year period, had their transfusion status identified and linked to data held within the national registry. Results: Of 720 patients, 221(30.7%) were transfused, with 214(29.7%) receiving a red blood cell (RBC) transfusion. The proportion of patients transfused at each centre ranged from 20% to 35%, with a median time to transfusion of 4 (IQR:0-12) days post-transplant. On multivariate analysis, age [OR: 1.02(1.01-1.03), p=0.001], gender [OR: 2.11(1.50-2.98), p<0.0001], ethnicity [OR: 1.28(1.28-2.60), p=0.0008], and dialysis dependence pre-transplant [OR: 1.67(1.08-2.68), p=0.02], were associated with transfusion. A risk-adjusted Cox proportional hazards model showed transfusion was associated with inferior 1-year patient survival [HR 7.94(2.08-30.27), p=0.002] and allograft survival [HR: 3.33(1.65-6.71), p=0.0008], and inferior allograft function. Conclusion: RBC transfusions are common and are independently associated with inferior transplant outcomes. We urge that further research is needed to understand the mechanisms behind the outcomes, to support the urgent development of transplant-specific anaemia guidelines.

8.
Transpl Int ; 36: 11374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547751

RESUMEN

The advent of Machine Perfusion (MP) as a superior form of preservation and assessment for cold storage of both high-risk kidney's and the liver presents opportunities in the field of beta-cell replacement. It is yet unknown whether such techniques, when applied to the pancreas, can increase the pool of suitable donor organs as well as ameliorating the effects of ischemia incurred during the retrieval process. Recent experimental models of pancreatic MP appear promising. Applications of MP to the pancreas, needs refinement regarding perfusion protocols and organ viability assessment criteria. To address the "Role of pancreas machine perfusion to increase the donor pool for beta cell replacement," the European Society for Organ Transplantation (ESOT) assembled a dedicated working group comprising of experts to review literature pertaining to the role of MP as a method of improving donor pancreas quality as well as quantity available for transplant, and to develop guidelines founded on evidence-based reviews in experimental and clinical settings. These were subsequently refined during the Consensus Conference when this took place in Prague.


Asunto(s)
Preservación de Órganos , Trasplante de Órganos , Humanos , Preservación de Órganos/métodos , Páncreas , Perfusión/métodos , Donantes de Tejidos
9.
Ann Surg ; 278(5): 676-682, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37503631

RESUMEN

OBJECTIVE: To provide mechanistic insight into key biological alterations in donation after circulatory death kidneys during continuous pefusion we performed mass spectrometry profiling of perfusate samples collected during a phase 3 randomized double-blind paired clinical trial of hypothermic machine perfusion with and without oxygen (COMPARE). BACKGROUND: Despite the clinical benefits of novel perfusion technologies aiming to better preserve donor organs, biological processes that may be altered during perfusion have remained largely unexplored. The collection of serial perfusate samples during the COMPARE clinical trial provided a unique resource to study perfusate proteomic profiles, with the hypothesis that in-depth profiling may reveal biologically meaningful information on how donor kidneys benefit from this intervention. METHODS: Multiplexed liquid chromatography-tandem mass spectrometry was used to obtain a proteome profile of 210 perfusate samples. Partial least squares discriminant analysis and multivariate analysis involving clinical and perfusion parameters were used to identify associations between profiles and clinical outcomes. RESULTS: Identification and quantitation of 1716 proteins indicated that proteins released during perfusion originate from the kidney tissue and blood, with blood-based proteins being the majority. Data show that the overall hypothermic machine perfusion duration is associated with increasing levels of a subgroup of proteins. Notably, high-density lipoprotein and complement cascade proteins are associated with 12-month outcomes, and blood-derived proteins are enriched in the perfusate of kidneys that developed acute rejection. CONCLUSIONS: Perfusate profiling by mass spectrometry was informative and revealed proteomic changes that are biologically meaningful and, in part, explain the clinical observations of the COMPARE trial.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/métodos , Proteoma/metabolismo , Proteómica , Preservación de Órganos/métodos , Riñón/metabolismo , Perfusión/métodos , Donantes de Tejidos
10.
PLoS One ; 18(6): e0287713, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352336

RESUMEN

Hypothermic machine perfusion (HMP) provides preservation superior to cold storage and may allow for organ assessment prior to transplantation. Since flavin mononucleotide (FMN) in perfusate has been proposed as a biomarker of organ quality during HMP of donor livers, the aim of this study was to validate FMN as a biomarker for organ quality in the context of HMP preserved kidneys. Perfusate samples (n = 422) from the paired randomised controlled COPE-COMPARE-trial, comparing HMP with oxygenation (HMPO2) versus standard HMP in kidneys, were used. Fluorescence intensity (FI) was assessed using fluorescence spectroscopy (excitation 450nm; emission 500-600nm) and validated by fluorospectrophotometer and targeted liquid chromatography mass spectrometry (LC-MS/MS). Fluorescence intensity (FI)(ex450;em500-600) increased over time during machine perfusion in both groups (p<0.0001). This increase was similar for both groups (p = 0.83). No correlation, however, was found between FI(ex450;em500-600) and post-transplant outcomes, including day 5 or 7 serum creatinine (p = 0.11; p = 0.16), immediate graft function (p = 0.91), creatinine clearance and biopsy-proven rejection at one year (p = 0.14; p = 0.59). LC-MS/MS validation experiments of samples detected FMN in only one perfusate sample, whilst the majority of samples with the highest fluorescence (n = 37/38, 97.4%) remained negative. In the context of clinical kidney HMP, fluorescence spectroscopy unfortunately appears to be not specific and probably unsuitable for FMN. This study shows that FMN does not classify as a clinically relevant predictive biomarker of kidney graft function after transplantation.


Asunto(s)
Mononucleótido de Flavina , Preservación de Órganos , Cromatografía Liquida , Preservación de Órganos/métodos , Espectrometría de Masas en Tándem , Diálisis Renal , Riñón , Perfusión/métodos , Biomarcadores
11.
EClinicalMedicine ; 50: 101516, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35784435

RESUMEN

Background: Donor-characteristics and donor characteristics-based decision algorithms are being progressively used in the decision process whether or not to accept an available donor kidney graft for transplantation. While this may improve outcomes, the performance characteristics of the algorithms remains moderate. To estimate the impact of donor factors of grafts accepted for transplantation on transplant outcomes, and to test whether implementation of donor-characteristics-based algorithms in clinical decision-making is justified, we applied an instrumental variable analysis to outcomes for kidney donor pairs transplanted in different individuals. Methods: This analysis used (dis)congruent outcomes of kidney donor pairs as an instrument and was based on national transplantation registry data for all donor kidney pairs transplanted in separate individuals in the Netherlands (1990-2018, 2,845 donor pairs), and the United Kingdom (UK, 2000-2018, 11,450 pairs). Incident early graft loss (EGL) was used as the primary discriminatory factor. It was reasoned that a scenario with a dominant impact of donor variables on transplantation outcomes would result in high concordance of EGL in both recipients, whilst dominance of asymmetrical outcomes could indicate a more complex scenario, involving an interaction of donor, procedural and recipient factors. Findings: Incidences of congruent EGL (Netherlands: 1·2%, UK: 0·7%) were slightly lower than the arithmetical (stochastic) incidences, suggesting that once a graft has been accepted for transplantation, donor factors minimally contribute to incident EGL. A long-term impact of donor factors was explored by comparing outcomes for functional grafts from donor pairs with asymmetrical vs. symmetrical outcomes. Recipient survival was similar for both groups, but a slightly compromised graft survival was observed for grafts with asymmetrical outcomes in the UK cohort: (10-years Hazard Ratio for graft loss: 1·18 [1·03-1·35] p<0·018); and 5 years eGFR (48·6 [48·3-49·0] vs. 46·0 [44·5-47·6] ml/min in the symmetrical outcome group, p<0·001). Interpretation: Our results suggest that donor factors for kidney grafts deemed acceptable for transplantation impact minimally on transplantation outcomes. A strong reliance on donor factors and/or donor-characteristics-based decision algorithms could result in unjustified rejection of grafts. Future efforts to optimize transplant outcomes should focus on a better understanding of the recipient factors underlying transplant outcomes. Funding: None.

12.
Liver Transpl ; 28(11): 1716-1725, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35662403

RESUMEN

In situ normothermic regional perfusion (NRP) and ex situ normothermic machine perfusion (NMP) aim to improve the outcomes of liver transplantation (LT) using controlled donation after circulatory death (cDCD). NRP and NMP have not yet been compared directly. In this international observational study, outcomes of LT performed between 2015 and 2019 for organs procured from cDCD donors subjected to NRP or NMP commenced at the donor center were compared using propensity score matching (PSM). Of the 224 cDCD donations in the NRP cohort that proceeded to asystole, 193 livers were procured, resulting in 157 transplants. In the NMP cohort, perfusion was commenced in all 40 cases and resulted in 34 transplants (use rates: 70% vs. 85% [p = 0.052], respectively). After PSM, 34 NMP liver recipients were matched with 68 NRP liver recipients. The two cohorts were similar for donor functional warm ischemia time (21 min after NRP vs. 20 min after NMP; p = 0.17), UK-Donation After Circulatory Death risk score (5 vs. 5 points; p = 0.38), and laboratory Model for End-Stage Liver Disease scores (12 vs. 12 points; p = 0.83). The incidence of nonanastomotic biliary strictures (1.5% vs. 2.9%; p > 0.99), early allograft dysfunction (20.6% vs. 8.8%; p = 0.13), and 30-day graft loss (4.4% vs. 8.8%; p = 0.40) were similar, although peak posttransplant aspartate aminotransferase levels were higher in the NRP cohort (872 vs. 344 IU/L; p < 0.001). NRP livers were more frequently allocated to recipients suffering from hepatocellular carcinoma (HCC; 60.3% vs. 20.6%; p < 0.001). HCC-censored 2-year graft and patient survival rates were 91.5% versus 88.2% (p = 0.52) and 97.9% versus 94.1% (p = 0.25) after NRP and NMP, respectively. Both perfusion techniques achieved similar outcomes and appeared to match benchmarks expected for donation after brain death livers. This study may inform the design of a definitive trial.


Asunto(s)
Carcinoma Hepatocelular , Enfermedad Hepática en Estado Terminal , Neoplasias Hepáticas , Trasplante de Hígado , Aspartato Aminotransferasas , Enfermedad Hepática en Estado Terminal/cirugía , Supervivencia de Injerto , Humanos , Trasplante de Hígado/métodos , Preservación de Órganos/métodos , Perfusión/métodos , Índice de Severidad de la Enfermedad
13.
Transpl Int ; 35: 10420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711321

RESUMEN

Donor kidney assessment may improve organ utilisation. Normothermic Machine Perfusion (NMP) has the potential to facilitate this advance. The mechanism of action is not yet determined and we aimed to assess mitochondrial function during NMP. Anaesthetised pigs (n = 6) had one kidney clamped for 60 min. The healthy contralateral kidney was removed and underwent NMP for 8 h (healthy control (HC), n = 6). Following 60 min warm ischaemia the injured kidney underwent HMP for 24 h, followed by NMP for 8 h (n = 6). Mitochondria were extracted from fresh tissue for analysis. Injured kidneys were analysed as two separate groups (IMa, n = 3 and IMb, n = 3). Renal resistance was higher (0.39ï, ± 0.29 vs. 1.65ï, ± 0.85; p = 0.01) and flow was lower (55ï, ± 28 vs. 7ï, ± 4; p = 0.03) during HMP in IMb than IMa. NMP blood flow was higher in IMa versus IMb (2-way ANOVA; p < 0.001) After 60 min NMP, O2 consumption was significantly lower in IMb versus IMa (p ≤ 0.002). State-3 respiration was significantly different between the groups (37ï, ± 19 vs. 24ï, ± 14 vs. 10ï, ± 8; nmolO2/min/mg; p = 0.049). Lactate levels were significantly lower in IMa versus IMb (p = 0.028). Mitochondrial respiration levels during NMP may be suggestive of kidney viability. Oxygen consumption, renal blood flow and lactate can differentiate severity of kidney injury during NMP.


Asunto(s)
Riñón , Preservación de Órganos , Animales , Humanos , Riñón/metabolismo , Lactatos/metabolismo , Mitocondrias , Consumo de Oxígeno , Perfusión , Porcinos , Supervivencia Tisular
14.
Front Immunol ; 13: 848352, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572574

RESUMEN

Hypothermic machine perfusion (HMP) has become the new gold standard in clinical donor kidney preservation and a promising novel strategy in higher risk donor livers in several countries. As shown by meta-analysis for the kidney, HMP decreases the risk of delayed graft function (DGF) and improves graft survival. For the liver, HMP immediately prior to transplantation may reduce the chance of early allograft dysfunction (EAD) and reduce ischemic sequelae in the biliary tract. Ischemia-reperfusion injury (IRI), unavoidable during transplantation, can lead to massive cell death and is one of the main causes for DGF, EAD or longer term impact. Molecular mechanisms that are affected in IRI include levels of hypoxia inducible factor (HIF), induction of cell death, endothelial dysfunction and immune responses. In this review we have summarized and discussed mechanisms on how HMP can ameliorate IRI. Better insight into how HMP influences IRI in kidney and liver transplantation may lead to new therapies and improved transplant outcomes.


Asunto(s)
Preservación de Órganos , Daño por Reperfusión , Supervivencia de Injerto , Humanos , Perfusión , Daño por Reperfusión/prevención & control , Donantes de Tejidos
15.
J Clin Med ; 11(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35456312

RESUMEN

BACKGROUND: In kidney transplantation, the relative contribution of various donor, procedure and recipient-related factors on clinical outcomes is unknown. Previous paired studies have largely focused on examining factors predicting early outcomes, where the effect of donor factors is thought to be most important. Here, we sought to examine the relationship between early and long-term outcomes in a UK-wide paired kidney analysis. METHODS: UK Transplant Registry data covering 24,090 kidney transplants performed between 2001-2018, where both kidneys from each donor were transplanted, were analysed. Case-control studies were constructed using matched pairs of kidneys from the same donor discordant for outcome, to delineate the impact of transplant and recipient factors on longer-term outcomes. RESULTS: Multivariable conditional logistic regression identified HLA mismatch as an important predictor of prolonged delayed graft function (DGF), in the context of a paired study controlling for the influence of donor factors, even when adjusting for early acute rejection. Prolonged DGF, but not human leucocyte antigen (HLA) mismatch, strongly predicted 12-month graft function, and impaired 12-month graft function was associated with an increased risk of graft failure. CONCLUSIONS: This study indicates prolonged DGF is associated with adverse long-term outcomes and suggests that alloimmunity may contribute to prolonged DGF by a mechanism distinct from typical early acute rejection.

16.
Transpl Int ; 35: 10167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35462792

RESUMEN

Assessment of specific ß-cell death can be used to determine the quality and viability of pancreatic islets prior to transplantation and hence predict the suitability of the pancreas for isolation. Recently, several groups have demonstrated that unmethylated insulin (INS)-DNA is correlated to ß-cell death in type 1 diabetes patients and during clinical islet isolation and subsequent transplantation. Here, we present a step-by-step protocol of our novel developed method for quantification of the relative amount of unmethylated INS-DNA using methylation sensitive restriction enzyme digital polymerase chain reaction This method provides a novel and sensitive way to quantify the relative amount of ß-cell derived unmethylated INS-DNA in cellular lysate. We therefore suggest that this technique can be of value to reliably determine the purity of an islet preparation and may also serve as a measure of the quality of islets prior to transplantation measuring unmethylated INS-DNA as a reflection of the relative amount of lysed ß-cells.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , ADN/genética , ADN/metabolismo , Metilación de ADN , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Reacción en Cadena de la Polimerasa
17.
Clin Proteomics ; 19(1): 6, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164671

RESUMEN

BACKGROUND: Remote Ischemic Conditioning (RIC) has been proposed as a therapeutic intervention to circumvent the ischemia/reperfusion injury (IRI) that is inherent to organ transplantation. Using a porcine kidney transplant model, we aimed to decipher the subclinical molecular effects of a RIC regime, compared to non-RIC controls. METHODS: Kidney pairs (n = 8 + 8) were extracted from brain dead donor pigs and transplanted in juvenile recipient pigs following a period of cold ischemia. One of the two kidney recipients in each pair was subjected to RIC prior to kidney graft reperfusion, while the other served as non-RIC control. We designed an integrative Omics strategy combining transcriptomics, proteomics, and phosphoproteomics to deduce molecular signatures in kidney tissue that could be attributed to RIC. RESULTS: In kidney grafts taken out 10 h after transplantation we detected minimal molecular perturbations following RIC compared to non-RIC at the transcriptome level, which was mirrored at the proteome level. In particular, we noted that RIC resulted in suppression of tissue inflammatory profiles. Furthermore, an accumulation of muscle extracellular matrix assembly proteins in kidney tissues was detected at the protein level, which may be in response to muscle tissue damage and/or fibrosis. However, the majority of these protein changes did not reach significance (p < 0.05). CONCLUSIONS: Our data identifies subtle molecular phenotypes in porcine kidneys following RIC, and this knowledge could potentially aid optimization of remote ischemic conditioning protocols in renal transplantation.

18.
Am J Transplant ; 22(4): 1073-1087, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34878723

RESUMEN

In brain death, cerebral injury contributes to systemic biological dysregulation, causing significant cellular stress in donor kidneys adversely impacting the quality of grafts. Here, we hypothesized that donation after brain death (DBD) kidneys undergo proteolytic processes that may deem grafts susceptible to posttransplant dysfunction. Using mass spectrometry and immunoblotting, we mapped degradation profiles of cytoskeletal proteins in deceased and living donor kidney biopsies. We found that key cytoskeletal proteins in DBD kidneys were proteolytically cleaved, generating peptide fragments, predominantly in grafts with suboptimal posttransplant function. Interestingly, α-actinin-4 and talin-1 proteolytic fragments were detected in brain death but not in circulatory death or living donor kidneys with similar donor characteristics. As talin-1 is a specific proteolytic target of calpain-1, we investigated a potential trigger of calpain activation and talin-1 degradation using human ex vivo precision-cut kidney slices and in vitro podocytes. Notably, we showed that activation of calpain-1 by transforming growth factor-ß generated proteolytic fragments of talin-1 that matched the degradation fragments detected in DBD preimplantation kidneys, also causing dysregulation of the actin cytoskeleton in human podocytes; events that were reversed by calpain-1 inhibition. Our data provide initial evidence that brain death donor kidneys are more susceptible to cytoskeletal protein degradation. Correlation to posttransplant outcomes may be established by future studies.


Asunto(s)
Trasplante de Riñón , Obtención de Tejidos y Órganos , Muerte Encefálica/patología , Proteínas del Citoesqueleto , Supervivencia de Injerto , Humanos , Riñón/patología , Trasplante de Riñón/efectos adversos , Trasplante de Riñón/métodos , Donadores Vivos , Proteolisis , Donantes de Tejidos
19.
Am J Transplant ; 22(2): 344-370, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34657378

RESUMEN

Despite decennia of research and numerous successful interventions in the preclinical setting, renal ischemia reperfusion (IR) injury remains a major problem in clinical practice, pointing toward a translational gap. Recently, two clinical studies on renal IR injury (manifested either as acute kidney injury or as delayed graft function) identified metabolic derailment as a key driver of renal IR injury. It was reasoned that these unambiguous metabolic findings enable direct alignment of clinical with preclinical data, thereby providing the opportunity to elaborate potential translational hurdles between preclinical research and the clinical context. A systematic review of studies that reported metabolic data in the context of renal IR was performed according to the PRISMA guidelines. The search (December 2020) identified 35 heterogeneous preclinical studies. The applied methodologies were compared, and metabolic outcomes were semi-quantified and aligned with the clinical data. This review identifies profound methodological challenges, such as the definition of IR injury, the follow-up time, and sampling techniques, as well as shortcomings in the reported metabolic information. In light of these findings, recommendations are provided in order to improve the translatability of preclinical models of renal IR injury.


Asunto(s)
Lesión Renal Aguda , Trasplante de Riñón , Daño por Reperfusión , Lesión Renal Aguda/etiología , Humanos , Riñón/metabolismo , Daño por Reperfusión/metabolismo
20.
Transplant Direct ; 8(1): e1271, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34934809

RESUMEN

BACKGROUND: Pancreas and islet transplantation outcomes are negatively impacted by injury to the endocrine cells from acute stress during donor death, organ procurement, processing, and transplant procedures. Here, we report a novel electron microscopy scoring system, the Newcastle Pancreas Endocrine Stress Score (NPESS). METHODS: NPESS was adapted and expanded from our previously validated method for scoring pancreatic exocrine acinar cells, yielding a 4-point scale (0-3) classifying ultrastructural pathology in endocrine cell nuclei, mitochondria, endoplasmic reticulum, cytoplasmic vacuolization, and secretory granule depletion, with a maximum additive score of 15. We applied NPESS in a cohort of deceased organ donors after brainstem (DBD) and circulatory (DCD) death with a wide range of cold ischemic times (3.6-35.9 h) including 3 donors with type 1 and 3 with type 2 diabetes to assess islets in situ (n = 30) in addition to pancreata (n = 3) pre- and postislet isolation. RESULTS: In DBD pancreata, NPESS correlated with cold ischemic time (head: r = 0.55; P = 0.02) and mirrored exocrine score (r = 0.48; P = 0.01). When stratified by endocrine phenotype, cells with granules of heterogeneous morphology had higher scores than α, ß, and δ cells (P < 0.0001). Cells of mixed endocrine-exocrine morphology were observed in association with increased NPESS (P = 0.02). Islet isolation was associated with improved NPESS (in situ: 8.39 ± 0.77 [Mean ± SD]; postisolation: 5.44 ± 0.31; P = 0.04). CONCLUSIONS: NPESS provides a robust method for semiquantitative scoring of subcellular ultrastructural changes in human pancreatic endocrine cells in situ and following islet isolation with utility for unbiased evaluation of acute stress in organ transplantation research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...