Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(6): 424, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890356

RESUMEN

Alterations in the dopamine catabolic pathway are known to contribute to the degeneration of nigrostriatal neurons in Parkinson's disease (PD). The progressive cellular buildup of the highly reactive intermediate 3,4-dihydroxyphenylacetaldehye (DOPAL) generates protein cross-linking, oligomerization of the PD-linked αSynuclein (αSyn) and imbalance in protein quality control. In this scenario, the autophagic cargo sequestome-1 (SQSTM1/p62) emerges as a target of DOPAL-dependent oligomerization and accumulation in cytosolic clusters. Although DOPAL-induced oxidative stress and activation of the Nrf2 pathway promote p62 expression, p62 oligomerization rather seems to be a consequence of direct DOPAL modification. DOPAL-induced p62 clusters are positive for ubiquitin and accumulate within lysosomal-related structures, likely affecting the autophagy-lysosomal functionality. Finally, p62 oligomerization and clustering is synergistically augmented by DOPAL-induced αSyn buildup. Hence, the substantial impact on p62 proteostasis caused by DOPAL appears of relevance for dopaminergic neurodegeneration, in which the progressive failure of degradative pathways and the deposition of proteins like αSyn, ubiquitin and p62 in inclusion bodies represent a major trait of PD pathology.


Asunto(s)
Dopamina , Proteína Sequestosoma-1 , Animales , Humanos , alfa-Sinucleína/metabolismo , Autofagia , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteína Sequestosoma-1/metabolismo
2.
Chemistry ; 30(41): e202400778, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38770991

RESUMEN

A ß-glucosyl sterol probe bearing a terminal alkyne moiety for fluorescent tagging enables the investigation of the neuronal and intracellular localization of this class of compounds involved in neurodegenerative diseases. The compound showed localization in the neuronal cells, with marked differences in the uptake and metabolism leading to enhanced persistence with respect to the un-glycosylated sterol analogue. In addition, a different impact was observed towards lysosomes, with the simple sterol probe showing the enlargement of the lysosome structures, while the ß-glucosyl sterol was less capable to alter the morphology of this specific organelle.


Asunto(s)
Colorantes Fluorescentes , Lisosomas , Enfermedades Neurodegenerativas , Neuronas , Esteroles , Colorantes Fluorescentes/química , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Lisosomas/metabolismo , Lisosomas/química , Esteroles/química , Humanos , Animales
3.
J Parkinsons Dis ; 14(3): 495-506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640169

RESUMEN

Background: Parkinson's disease is a progressive neurodegenerative disorder mainly distinguished by sporadic etiology, although a genetic component is also well established. Variants in the LRRK2 gene are associated with both familiar and sporadic disease. We have previously shown that PAK6 and 14-3-3γ protein interact with and regulate the activity of LRRK2. Objective: The aim of this study is to quantify PAK6 and 14-3-3γ in plasma as reliable biomarkers for the diagnosis of both sporadic and LRRK2-linked Parkinson's disease. Methods: After an initial quantification of PAK6 and 14-3-3γ expression by means of Western blot in post-mortem human brains, we verified the presence of the two proteins in plasma by using quantitative ELISA tests. We analyzed samples obtained from 39 healthy subjects, 40 patients with sporadic Parkinson's disease, 50 LRRK2-G2019S non-manifesting carriers and 31 patients with LRRK2-G2019S Parkinson's disease. Results: The amount of PAK6 and 14-3-3γ is significantly different in patients with Parkinson's disease compared to healthy subjects. Moreover, the amount of PAK6 also varies with the presence of the G2019S mutation in the LRRK2 gene. Although the generalized linear models show a low association between the presence of Parkinson's disease and PAK6, the kinase could be added in a broader panel of biomarkers for the diagnosis of Parkinson's disease. Conclusions: Changes of PAK6 and 14-3-3γ amount in plasma represent a shared readout for patients affected by sporadic and LRRK2-linked Parkinson's disease. Overall, they can contribute to the establishment of an extended panel of biomarkers for the diagnosis of Parkinson's disease.


Asunto(s)
Proteínas 14-3-3 , Biomarcadores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Quinasas p21 Activadas , Humanos , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Proteínas 14-3-3/sangre , Masculino , Quinasas p21 Activadas/sangre , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Femenino , Anciano , Biomarcadores/sangre , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Persona de Mediana Edad , Anciano de 80 o más Años , Estudios Prospectivos , Adulto , Mutación
4.
ACS Chem Neurosci ; 15(2): 215-221, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38131609

RESUMEN

Since the SARS-CoV-2 virus started spreading worldwide, evidence pointed toward an impact of the infection on the nervous system. COVID-19 patients present neurological manifestations and have an increased risk of developing brain-related symptoms in the long term. In fact, evidence in support of the neuroinvasive potential of SARS-CoV-2 has emerged. Considering that viral parkisonism was observed as a consequence of encephalopathies caused by viral infections, it has been already suggested that COVID-19 could affect the dopaminergic neurons and contribute to neurodegeneration in Parkinson's disease (PD), by promoting the formation of amyloid fibrils constituted by the PD-related protein α-synuclein. Here, we observe not only that SARS-CoV-2 viral spike protein and nucleocapsid protein can alone promote α-synuclein aggregation but also that the spike protein organization in a corona shape on the viral envelope may be crucial in triggering fast amyloid fibrils formation, thus possibly contributing to PD pathogenesis.


Asunto(s)
COVID-19 , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enfermedad de Parkinson/metabolismo
5.
Antioxidants (Basel) ; 12(7)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507945

RESUMEN

Oxygen reactive species (ROS) are a group of molecules generated from the incomplete reduction of oxygen. Due to their high reactivity, ROS can interact with and influence the function of multiple targets, which include DNA, lipids, and proteins. Among the proteins affected by ROS, AMP-activated protein kinase (AMPK) is considered a major sensor of the intracellular energetic status and a crucial hub involved in the regulation of key cellular processes, like autophagy and lysosomal function. Thanks to these features, AMPK has been recently demonstrated to be able to perceive signals related to the variation of mitochondrial dynamics and to transduce them to the lysosomes, influencing the autophagic flux. Since ROS production is largely dependent on mitochondrial activity, through the modulation of AMPK these molecules may represent important signaling agents which participate in the crosstalk between mitochondria and lysosomes, allowing the coordination of these organelles' functions. In this review, we will describe the mechanisms through which ROS activate AMPK and the signaling pathways that allow this protein to affect the autophagic process. The picture that emerges from the literature is that AMPK regulation is highly tissue-specific and that different pools of AMPK can be localized at specific intracellular compartments, thus differentially responding to altered ROS levels. For this reason, future studies will be highly advisable to discriminate the specific contribution of the activation of different AMPK subpopulations to the autophagic pathway.

6.
Cells ; 12(11)2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37296608

RESUMEN

Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Masculino , Enfermedad de Parkinson/patología , Hormonas , Encéfalo/patología , Hormonas Esteroides Gonadales , Enfermedades Neurodegenerativas/patología , Cromosomas Sexuales/genética
7.
NPJ Parkinsons Dis ; 9(1): 42, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966140

RESUMEN

Dopamine dyshomeostasis has been acknowledged among the determinants of nigrostriatal neuron degeneration in Parkinson's disease (PD). Several studies in experimental models and postmortem PD patients underlined increasing levels of the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is highly reactive towards proteins. DOPAL has been shown to covalently modify the presynaptic protein αSynuclein (αSyn), whose misfolding and aggregation represent a major trait of PD pathology, triggering αSyn oligomerization in dopaminergic neurons. Here, we demonstrated that DOPAL elicits αSyn accumulation and hampers αSyn clearance in primary neurons. DOPAL-induced αSyn buildup lessens neuronal resilience, compromises synaptic integrity, and overwhelms protein quality control pathways in neurites. The progressive decline of neuronal homeostasis further leads to dopaminergic neuron loss and motor impairment, as showed in in vivo models. Finally, we developed a specific antibody which detected increased DOPAL-modified αSyn in human striatal tissues from idiopathic PD patients, corroborating the translational relevance of αSyn-DOPAL interplay in PD neurodegeneration.

8.
Neurobiol Dis ; 176: 105941, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36473592

RESUMEN

The protein DJ-1 is mutated in rare familial forms of recessive Parkinson's disease and in parkinsonism accompanied by amyotrophic lateral sclerosis symptoms and dementia. DJ-1 is considered a multitasking protein able to confer protection under various conditions of stress. However, the precise cellular function still remains elusive. In the present work, we evaluated fruit flies lacking the expression of the DJ-1 homolog dj-1ß as compared to control aged-matched individuals. Behavioral evaluations included lifespan, locomotion in an open field arena, sensitivity to oxidative insults, and resistance to starvation. Molecular analyses were carried out by analyzing the mitochondrial morphology and functionality, and the autophagic response. We demonstrated that dj-1ß null mutant flies are hypoactive and display higher sensitivity to oxidative insults and food deprivation. Analysis of mitochondrial homeostasis revealed that loss of dj-1ß leads to larger and more circular mitochondria, characterized by impaired complex-I-linked respiration while preserving ATP production capacity. Additionally, dj-1ß null mutant flies present an impaired autophagic response, which is suppressed by treatment with the antioxidant molecule N-Acetyl-L-Cysteine. Overall, our data point to a mechanism whereby DJ-1 plays a critical role in the maintenance of energy homeostasis, by sustaining mitochondrial homeostasis and affecting the autophagic flux through the maintenance of the cellular redox state. In light of the involvement of DJ-1 in neurodegenerative diseases and considering that neurons are highly energy-demanding cells, particularly sensitive to redox stress, our study sheds light on a key role of DJ-1 in the maintenance of cellular homeostasis.


Asunto(s)
Proteínas de Drosophila , Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Mitocondrias/metabolismo , Antioxidantes , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/metabolismo , Drosophila/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Estrés Oxidativo , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
9.
Int J Biochem Cell Biol ; 154: 106345, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521722

RESUMEN

Mitochondria, endoplasmic reticulum and lysosomes are involved in different pathways that can regulate pre-synaptic function. In particular, they could modulate ATP availability in response to rapid changes, could control synaptic protein levels and adjust Ca2+ signalling, which could all impact on neuronal activity. Organelles functions in these processes need to be considered alone when describing the impact of pre-synaptic organelles on neurotransmission. However, the interplay among organelles, which occurs either via signalling pathways or through physical membranous contacts, has to be considered. In this brief review, the physiological role of organelles localized at the pre-synapse in neuronal function is discussed.


Asunto(s)
Neuronas , Orgánulos , Orgánulos/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Transmisión Sináptica , Calcio/metabolismo
10.
NPJ Parkinsons Dis ; 8(1): 92, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853899

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways, and immune function. Mutations in LRRK2 cause autosomal-dominant forms of Parkinson's disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD. Moreover, GCase function is altered in idiopathic PD and in other genetic forms of the disease. Recent work suggests that LRRK2 kinase activity can regulate GCase function. However, both a positive and a negative correlation have been described. To gain insights into the impact of LRRK2 on GCase, we performed a comprehensive analysis of GCase levels and activity in complementary LRRK2 models, including (i) LRRK2 G2019S knock in (GSKI) mice, (ii) peripheral blood mononuclear cell (PBMCs), plasma, and fibroblasts from PD patients carrying LRRK2 G2019S mutation, (iii) patient iPSCs-derived neurons; (iv) endogenous and overexpressed cell models. In some of these models we found a positive correlation between the activities of LRRK2 and GCase, which was further confirmed in cell lines with genetic and pharmacological manipulation of LRRK2 kinase activity. GCase protein level is reduced in GSKI brain tissues and in G2019S iPSCs-derived neurons, but increased in fibroblasts and PBMCs from patients, suggesting cell-type-specific effects. Overall, our study indicates that LRRK2 kinase activity affects both the levels and the catalytic activity of GCase in a cell-type-specific manner, with important implications in the context of therapeutic application of LRRK2 inhibitors in GBA1-linked and idiopathic PD.

11.
Mol Neurobiol ; 59(8): 5000-5023, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35665902

RESUMEN

The microphthalmia/transcription factor E (MiTF/TFE) transcription factors are responsible for the regulation of various key processes for the maintenance of brain function, including autophagy-lysosomal pathway, lipid catabolism, and mitochondrial homeostasis. Among them, autophagy is one of the most relevant pathways in this frame; it is evolutionary conserved and crucial for cellular homeostasis. The dysregulation of MiTF/TFE proteins was shown to be involved in the development and progression of neurodegenerative diseases. Thus, the characterization of their function is key in the understanding of the etiology of these diseases, with the potential to develop novel therapeutics targeted to MiTF/TFE proteins and to the autophagic process. The fact that these proteins are evolutionary conserved suggests that their function and dysfunction can be investigated in model organisms with a simpler nervous system than the mammalian one. Building not only on studies in mammalian models but also in complementary model organisms, in this review we discuss (1) the mechanistic regulation of MiTF/TFE transcription factors; (2) their roles in different regions of the central nervous system, in different cell types, and their involvement in the development of neurodegenerative diseases, including lysosomal storage disorders; (3) the overlap and the compensation that occur among the different members of the family; (4) the importance of the evolutionary conservation of these protein and the process they regulate, which allows their study in different model organisms; and (5) their possible role as therapeutic targets in neurodegeneration.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Microftalmía , Animales , Humanos , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Encéfalo/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Microftalmía/metabolismo
12.
Acta Neuropathol ; 144(1): 81-106, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35596783

RESUMEN

The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson's disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson , Sistema de Transporte de Aminoácidos X-AG , Animales , Glutamatos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Mutación , Neuronas/patología , Enfermedad de Parkinson/patología
13.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208778

RESUMEN

Parkinson's disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid-protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.


Asunto(s)
Ceramidas/biosíntesis , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Vías Biosintéticas/efectos de los fármacos , Línea Celular Tumoral , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Ácidos Grasos Monoinsaturados/metabolismo , Humanos , Espacio Intracelular/metabolismo , Estrés Oxidativo , Enfermedad de Parkinson/tratamiento farmacológico , Esfingolípidos/metabolismo
14.
Trends Neurosci ; 44(5): 342-351, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33608137

RESUMEN

Excitotoxicity is likely to occur in pathological scenarios in which mitochondrial function is already compromised, shaping neuronal responses to glutamate. In fact, mitochondria sustain cell bioenergetics, tune intracellular Ca2+ dynamics, and regulate glutamate availability by using it as metabolic substrate. Here, we suggest the need to explore glutamate toxicity in the context of specific disease models in which it may occur, re-evaluating the impact of mitochondrial dysfunction on glutamate excitotoxicity. Our aim is to signpost new approaches, perhaps combining glutamate and pathways to rescue mitochondrial function, as therapeutic targets in neurological disorders.


Asunto(s)
Calcio , Mitocondrias , Calcio/metabolismo , Metabolismo Energético , Ácido Glutámico/metabolismo , Humanos , Mitocondrias/metabolismo , Neuronas/metabolismo
15.
Mol Neurobiol ; 58(7): 3119-3140, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33629273

RESUMEN

Parkinson's disease (PD) is a neurodegenerative, progressive disease without a cure. To prevent PD onset or at least limit neurodegeneration, a better understanding of the underlying cellular and molecular disease mechanisms is crucial. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene represent one of the most common causes of familial PD. In addition, LRRK2 variants are risk factors for sporadic PD, making LRRK2 an attractive therapeutic target. Mutations in LRRK2 have been linked to impaired alpha-synuclein (α-syn) degradation in neurons. However, in which way pathogenic LRRK2 affects α-syn clearance by astrocytes, the major glial cell type of the brain, remains unclear. The impact of astrocytes on PD progression has received more attention and recent data indicate that astrocytes play a key role in α-syn-mediated pathology. In the present study, we aimed to compare the capacity of wild-type astrocytes and astrocytes carrying the PD-linked G2019S mutation in Lrrk2 to ingest and degrade fibrillary α-syn. For this purpose, we used two different astrocyte culture systems that were exposed to sonicated α-syn for 24 h and analyzed directly after the α-syn pulse or 6 days later. To elucidate the impact of LRRK2 on α-syn clearance, we performed various analyses, including complementary imaging, transmission electron microscopy, and proteomic approaches. Our results show that astrocytes carrying the G2019S mutation in Lrrk2 exhibit a decreased capacity to internalize and degrade fibrillar α-syn via the endo-lysosomal pathway. In addition, we demonstrate that the reduction of α-syn internalization in the Lrrk2 G2019S astrocytes is linked to annexin A2 (AnxA2) loss of function. Together, our findings reveal that astrocytic LRRK2 contributes to the clearance of extracellular α-syn aggregates through an AnxA2-dependent mechanism.


Asunto(s)
Astrocitos/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Astrocitos/patología , Línea Celular Transformada , Células Cultivadas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética
16.
Angew Chem Int Ed Engl ; 60(10): 5173-5178, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33180342

RESUMEN

Proteins reconfigure their 3D-structure, and consequently their function, under the control of specific molecular interactions that sense, process and transmit information from the surrounding environment. When this fundamental process is hampered, many pathologies occur as in the case of protein misfolding diseases. In this work, we follow the early steps of α-synuclein (aS) aggregation, a process associated with Parkinson's disease etiopathogenesis, that is promptly promoted by a light-mediated binding between the protein and a photoactive foldamer. The latter can switch between two conformations, one of which generates supramolecular fibrillar seeds that act as molecular templates able to induce a fast ß-sheet transition for aS monomers that successively undergo fibrillar polymerization. The proposed method represents a powerful tool to study protein aggregation relevant to misfolding diseases in a controlled and inducible system.


Asunto(s)
Peptidomiméticos/química , Multimerización de Proteína/efectos de los fármacos , alfa-Sinucleína/metabolismo , Humanos , Peptidomiméticos/efectos de la radiación , Conformación Proteica/efectos de la radiación , alfa-Sinucleína/efectos de los fármacos
17.
Cells ; 9(11)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105882

RESUMEN

Mutations in LRRK2 cause familial Parkinson's disease and common variants increase disease risk. LRRK2 kinase activity and cellular localization are tightly regulated by phosphorylation of key residues, primarily Ser1292 and Ser935, which impacts downstream phosphorylation of its substrates, among which Rab10. A comprehensive characterization of LRRK2 activity and phosphorylation in brain as a function of age and mutations is missing. Here, we monitored Ser935 and Ser1292 phosphorylation in midbrain, striatum, and cortex of 1, 6, and 12 months-old mice carrying G2019S and R1441C mutations or murine bacterial artificial chromosome (BAC)-Lrrk2-G2019S. We observed that G2019S and, at a greater extent, R1441C brains display decreased phospho-Ser935, while Ser1292 autophosphorylation increased in G2019S but not in R1441C brain, lung, and kidney compared to wild-type. Further, Rab10 phosphorylation, is elevated in R1441C carrying mice, indicating that the effect of LRRK2 mutations on substrate phosphorylation is not generalizable. In BAC-Lrrk2-G2019S striatum and midbrain, Rab10 phosphorylation, but not Ser1292 autophosphorylation, decreases at 12-months, pointing to autophosphorylation and substrate phosphorylation as uncoupled events. Taken together, our study provides novel evidence that LRRK2 phosphorylation in mouse brain is differentially impacted by mutations, brain area, and age, with important implications as diagnostic markers of disease progression and stratification.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Proteínas de Unión al GTP rab/metabolismo , Factores de Edad , Animales , Encéfalo/metabolismo , Encéfalo/patología , Técnica del Anticuerpo Fluorescente , Expresión Génica , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Especificidad de Órganos/genética , Fosforilación
18.
J Chem Inf Model ; 60(10): 5265-5281, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-32866007

RESUMEN

The in solution synchrotron small-angle X-ray scattering SAXS technique has been used to investigate an intrinsically disordered protein (IDP) related to Parkinson's disease, the α-synuclein (α-syn), in prefibrillar diluted conditions. SAXS experiments have been performed as a function of temperature and concentration on the wild type (WT) and on the three pathogenic mutants G51D, E46K, and A53T. To identify the conformers that populate WT α-syn and the pathogenic mutants in prefibrillar conditions, scattering data have been analyzed by a new variational bayesian weighting method (VBWSAS) based on an ensemble of conformers, which includes unfolded monomers, trimers, and tetramers, both in helical-rich and strand-rich forms. The developed VBWSAS method uses a thermodynamic scheme to account for temperature and concentration effects and considers long-range protein-protein interactions in the framework of the random phase approximation. The global analysis of the whole set of data indicates that WT α-syn is mostly present as unfolded monomers and trimers (helical-rich trimers at low T and strand-rich trimers at high T), but not tetramers, as previously derived by several studies. On the contrary, different conformer combinations characterize mutants. In the α-syn G51D mutant, the most abundant aggregates at all the temperatures are strand-rich tetramers. Strand-rich tetramers are also the predominant forms in the A53T mutant, but their weight decreases with temperature. Only monomeric conformers, with a preference for the ones with the smallest sizes, are present in the E46K mutant. The derived conformational behavior then suggests a different availability of species prone to aggregate, depending on mutation, temperature, and concentration and accounting for the different neurotoxicity of α-syn variants. Indeed, this approach may be of pivotal importance to describe conformational and aggregational properties of other IDPs.


Asunto(s)
alfa-Sinucleína , Teorema de Bayes , Mutación , Dispersión del Ángulo Pequeño , Termodinámica , Difracción de Rayos X , Rayos X , alfa-Sinucleína/genética
19.
Cell Death Differ ; 27(8): 2534, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32152554

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Cell Death Differ ; 27(5): 1588-1603, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31685979

RESUMEN

Heterozygous mutations of the lysosomal enzyme glucocerebrosidase (GBA1) represent the major genetic risk for Parkinson's disease (PD), while homozygous GBA1 mutations cause Gaucher disease, a lysosomal storage disorder, which may involve severe neurodegeneration. We have previously demonstrated impaired autophagy and proteasomal degradation pathways and mitochondrial dysfunction in neurons from GBA1 knockout (gba1-/-) mice. We now show that stimulation with physiological glutamate concentrations causes pathological [Ca2+]c responses and delayed calcium deregulation, collapse of mitochondrial membrane potential and an irreversible fall in the ATP/ADP ratio. Mitochondrial Ca2+ uptake was reduced in gba1-/- cells as was expression of the mitochondrial calcium uniporter. The rate of free radical generation was increased in gba1-/- neurons. Behavior of gba1+/- neurons was similar to gba1-/- in terms of all variables, consistent with a contribution of these mechanisms to the pathogenesis of PD. These data signpost reduced bioenergetic capacity and [Ca2+]c dysregulation as mechanisms driving neurodegeneration.


Asunto(s)
Calcio/metabolismo , Metabolismo Energético , Glucosilceramidasa/deficiencia , Neuronas/patología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/patología , Radicales Libres/metabolismo , Glucosilceramidasa/metabolismo , Ácido Glutámico/toxicidad , Homeostasis/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Receptores de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...