Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611238

RESUMEN

Semi-crystalline natural polymers are involved in many technological processes. Biopolymers having identical chemical compositions can differ in reactivity in heterogeneous transformations depending on their crystal structure (polymorphic modification). This paper compares the crystal structure recrystallization processes occurring in natural polysaccharides (cellulose, chitin, and starch) in the individual form and as a component of native biomass. Aqueous treatment of pre-amorphized semi-crystalline biopolymers was shown to result in swelling, thus alleviating the kinetic restrictions imposed on the restoration of crystalline regions and phase transition to the thermodynamically more stable polymorphic modification. During recrystallization, cellulose I in the individual form and within plant-based biomass undergoes a transition to the more stable cellulose II. A similar situation was demonstrated for α- and ß-chitin, which recrystallize only into the α-polymorphic modification in the case of both individual polymers and native materials. Recrystallization of A-, B-, and C-type starch, both in the individual form and within plant-based flour, during aqueous treatment, results in a phase transition, predominantly to the B-type starch. The recrystallization process depends on the temperature of aqueous treatment; longer treatment duration has almost no effect on the recrystallization degree of polymers, both in the individual form and within native materials.

2.
Polymers (Basel) ; 15(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242877

RESUMEN

The release of a spin probe (nitroxide radical) from polymer films was studied by electron paramagnetic resonance (EPR). The films were fabricated from starch having different crystal structures (A-, B-, and C-types) and disordering degrees. Film morphology (analysis of the scanning electron microscopy (SEM)) depended on the presence of dopant (nitroxide radical) to a larger extent rather than on crystal structure ordering or polymorphic modification. The presence of nitroxide radical led to additional crystal structure disordering and reduced the crystallinity index from the X-ray diffraction (XRD) data. Polymeric films made of amorphized starch powder were able to undergo recrystallization (crystal structure rearrangement), which manifested itself as an increase in crystallinity index and phase transition of the A- and C-type crystal structures to the B-type one. It was demonstrated that nitroxide radical does not form an individual phase during film preparation. According to the EPR data, local permittivity of starch-based films varied from 52.5 to 60.1 F/m, while bulk permittivity did not exceed 17 F/m, which demonstrates that local concentration of water is increased in the regions near the nitroxide radical. The mobility of the spin probe corresponds to small stochastic librations and is indicative of the strongly a mobilized state. The application of kinetic models made it possible to find out that substance release from biodegradable films consists of two stages: matrix swelling and spin probe diffusion through the matrix. Investigation of the release kinetics for nitroxide radical demonstrated that the course of this process depends on the type of crystal structure of native starch.

3.
Plant Foods Hum Nutr ; 78(1): 186-192, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36534234

RESUMEN

Plants growing in unfavorable environments, such as sea buckthorn, can have a high serotonin content. The potential of using different parts of sea buckthorn (Hippophae rhamnoides L.) as a natural source of serotonin was investigated. The feasibility of extracting serotonin hormone from the non-fruit parts of sea buckthorn is demonstrated. One- and two-year-old woody shoots were the best material for obtaining serotonin-containing raw product. Serotonin content in shoots of different sea buckthorn varieties growing in different regions and its dynamics during the vegetation period were determined by high-performance liquid chromatography. Serotonin is a water-soluble substance prone to microbial degradation, so proper preparation of raw materials plays a very important role in preserving serotonin in plant samples. A method for serotonin extraction using preliminary mechanochemical treatment is presented: it consists in pre-grinding, followed by mechanical treatment of raw materials with 5% adipic acid in a semi-industrial centrifugal mill. The highest degree of serotonin extraction was achieved when using air circulation at a drying temperature of 60-80 °C; serotonin concentration decreased when temperature was further increased. Serotonin content depended on the place and time of harvesting, the method used for drying the branches, and the characteristics of the plant variety. The minimum serotonin concentration (29 mg/g dry basis) was observed during summer; the maximum concentration was observed during winter; the annual changes in concentration can be as significant as 10-fold. The possibility of industrial cultivation and harvesting of different sea buckthorn varieties was also considered.


Asunto(s)
Hippophae , Hippophae/química , Estaciones del Año , Serotonina , Temperatura , Cromatografía Líquida de Alta Presión
4.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36365568

RESUMEN

This study demonstrated the feasibility of comprehensive enzymatic conversion of starch for non-waste applications in food industry. Enzymatic conversion of starch gives rise to nano-sized particles that can be used for manufacturing biodegradable and edible packaging materials and glucose syrup for replacing sugar in confectionery formulations. The 96 h enzymatic hydrolysis yielded starch nanoparticles smaller than 100 nm. Films based on nano-sized starch particles have promising physicochemical properties for manufacturing biodegradable and edible packaging materials. Such properties as reduced moisture content, increased homogeneity, crystallinity, and high initial thermal stability improve the mechanical and performance characteristics of the final food packaging materials. During film formation from starch subjected to preliminary mechanical amorphization, the polymer chain is recrystallized. The C-type crystal structure of starch is converted to the B-type structure. The supernatant obtained by starch hydrolysis can be used for producing glucose syrup. The resulting glucose syrup can be used as a sugar substitute in production of confectionery products. No objective technological differences in properties of glucose syrup obtained by comprehensive conversion of starch and the commercially available glucose syrup derived from sucrose were revealed.

5.
Polymers (Basel) ; 14(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36298017

RESUMEN

Mechanical amorphization of three chitosan samples with high, medium, and low molecular weight was studied. It is shown that there are no significant differences between the course of amorphization process in a planetary ball mill of chitosan with different molecular weights, and the maximum degree of amorphization was achieved in 600 s of high intensity mechanical action. Specific energy consumption was 28 kJ/g, being comparable to power consumption for amorphization of cellulose determined previously (29 kJ/g) and 5-7-fold higher than that for amorphization of starch (4-6 kJ/g). Different techniques for determining the crystallinity index (CrI) of chitosan (analysis of the X-ray diffraction (XRD) data, the peak height method, the amorphous standard method, peak deconvolution, and full-profile Rietveld analysis) were compared. The peak height method is characterized by a broader working range but provides deviated CrI values. The peak deconvolution method (with the amorphous Voigt function) makes it possible to calculate the crystallinity index of chitosan with greater accuracy, but the analysis becomes more difficult with samples subjected to mechanical processing. In order to refine the structure and calculation of CrI by the Rietveld method, an attempt to optimize the structure file by the density functional theory (DFT) method was performed. The averaged profile of amorphous chitosan approximated by an eighth-order Fourier model improved the correctness of the description of the amorphous contribution for XRD data processing. The proposed equation may be used as a universal standard model of amorphous chitosan to determine the crystallinity index both for the amorphous standard method and for peak deconvolution of XRD patterns for arbitrary chitosan samples.

6.
Nutrients ; 14(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631133

RESUMEN

This study presents findings on the biological action of an integrated supplement containing the following components involved in osteogenesis and mineralization: vitamin D and silicon in the bioavailable and soluble form. A hypothesis that these components potentiate one another's action and make calcium absorption by the body more efficient was tested. Biological tests of the effect of vitamin D and silicon chelates on bone fracture healing and bone turnover were conducted using ICR mice and albino Wistar rats. Radiographic and biochemical studies show that the supplement simultaneously containing silicon chelates and vitamin D stimulates bone tissue regeneration upon mechanical defects and accelerates differentiation of osteogenic cells, regeneration of spongy and compact bones, and restoration of bone structure due to activation of osteoblast performance. Bone structure restoration was accompanied by less damage to skeletal bones, apparently due to better absorption of calcium from food. The studied supplement has a similar effect when used to manage physiologically induced decalcification, thus holding potential for the treatment of osteomalacia during pregnancy or occupational diseases (e.g., for managing bone decalcification in astronauts).


Asunto(s)
Curación de Fractura , Vitamina D , Animales , Remodelación Ósea , Calcio , Calcio de la Dieta , Quelantes , Femenino , Ratones , Ratones Endogámicos ICR , Embarazo , Ratas , Silicio/farmacología , Vitamina D/farmacología , Vitamina D/fisiología , Vitaminas
7.
Polymers (Basel) ; 12(3)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178224

RESUMEN

This paper examines the effect of mechanical activation on the amorphization of starch having different types of crystalline structure (A-type corn starch; B-type potato starch; and C-type tapioca starch). Structural properties of the starches were studied by X-ray diffraction analysis. Mechanical activation in a planetary ball mill reduces the degree of crystallinity in proportion to pretreatment duration. C-type tapioca starch was found to have the highest degree of crystallinity. Energy consumed to achieve complete amorphization of the starches having different types of crystalline structure was measured. The kinetic parameters of the process (the effective rate constants) were determined. The rate constant and the strongest decline in the crystallinity degree after mechanical activation change in the following series: C-type starch, A-type starch, and B-type starch.

8.
Molecules ; 25(4)2020 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-32102256

RESUMEN

The cooperative thermomechanical properties of plant-derived polymers have been studied insufficiently, although this feedstock has a very high potential. In the present paper, we analyzed the changes in the structure and physicochemical properties of lignin-rich biomass induced by thermomechanical pretreatment. Low-temperature treatment allows one to retain the original supramolecular structure of the cell walls, while an appreciably high disintegration degree is reached. This increases the reactivity of the material in the subsequent heterogeneous reactions. Mechanical pretreatment at medium temperatures (10 °C), when almost all cell wall polymers except for low-molecular-weight lignin are in the glassy state, enhances the mobility of cell wall polymers and causes sufficient cellulose disordering, while the specific surface area is not significantly increased. High-temperature pretreatment of reed biomass is accompanied by pore formation and lignin release from the cell wall structure, which opens up new prospects for using this biomass as a matrix to produce core-shell-structured sorbents of heavy metals. The energy consumed by mechanochemical equipment for the activation of reed biomass was determined.


Asunto(s)
Lignina/química , Poaceae/química , Biomasa , Fenómenos Biomecánicos , Pared Celular/química , Temperatura
9.
RSC Adv ; 10(36): 21108-21114, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35518752

RESUMEN

Mechanochemical activation of coal is commonly employed in industry. However, even the simplest solid-phase reactions, such as neutralization of humic acids in brown coal, remain insufficiently studied. The hypothesis regarding the occurrence of mechanochemical neutralization under local hydrothermal conditions for humic acids in brown coal has been tested in this study. 3D modelling of the "block-interlayer" system (where coal particles are separated by air interlayers saturated with water vapor) was used. The 3D model showed that the permittivity is expected to rise from 14 to 16% as the moisture content in the system increases from 12 to 15%. The actual permittivities of coal with different moisture contents have been measured by dielectric spectroscopy. In the real system, the permittivity increases more than threefold as the moisture content rises from 12 to 15%. This increase is much greater than the calculated one, demonstrating that the phase containing unbound water appears in the system at a moisture content of ∼12-13% and may exert various effects on the solid-phase reaction. There is a correlation between the moisture content, permittivity, and predominant mechanisms of the reaction between the organic matter in brown coal and sodium percarbonate (a reagent simultaneously containing the alkaline and peroxidic components). The reactions between brown coal and alkaline reagents proceed under local hydrothermal conditions. Both the alkaline and peroxidic components of sodium percarbonate participate in the solid-phase reaction between brown coal and sodium percarbonate. The emergence of unbound water in coal significantly inhibits the oxidation reaction.

10.
Polymers (Basel) ; 11(7)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323787

RESUMEN

As a heterogeneous process, enzymatic hydrolysis depends on the contact area between enzymes and the cellulose substrate. The surface area of a substrate is typically evaluated through the sorption of gases (nitrogen, argon, or water vapor) or sorption of high-molecular-weight pigments or proteins. However, lignocellulosic biomass uninvolved in the reaction because of inefficient binding or even the complete inhibition of the enzymes on the surface consisting of lignin or inorganic compounds is erroneously taken into account under these conditions. The initial rate of enzymatic hydrolysis will directly depend on the number of enzymes efficiently sorbed onto cellulose. In this study, the sorption of cellulolytic enzymes was used to evaluate the surface accessibility of the cellulose substrate and its changes during mechanical pretreatment. It was demonstrated that for pure cellulose, mechanical activation did not alter the chemical composition of the surface and the initial rate of hydrolysis increased, which was inconsistent with the data on the thermal desorption of nitrogen. New active cellulose sorption sites were shown to be formed upon. the mechanical activation of plant biomass (wheat straw), and the ultimate initial rate of hydrolysis corresponding to saturation of the accessible surface area with enzyme molecules was determined.

11.
Biotechnol Bioeng ; 116(5): 1231-1244, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659596

RESUMEN

At present, "mechanochemistry" is synonymous with "grinding," according to the views of a significant number of scientists and technologists. Often, one comes across the opinion that "the less the particle size, the better." The cases of considering chemical reactions occurring during pretreatment, as well as considering changes in the ultrastructure of cell walls are extremely rare. Also, the wrong choice of the type of mechanical impact and the equipment used in most cases leads to excessive consumption of electrical energy and reduce economic efficiency. The review presents the currently available published data on mechanically activated processes for the pretreatment of plant materials and shows that when using mechanical treatment, it is necessary to look more closely at the phenomena occurring, rather than reducing everything to the production of fine and ultrafine powders. As a result of mechanical action, active surface radicals can form, hydrothermal chemical processes can occur, and mechanocomposites can form. The role of interphase processes, changes in surface chemistry, related dimensional effects, and the disordering of the crystal structure and amorphization should be taken into account. In addition, the physicochemical insights in mechanical pretreatment make it possible to more efficiently use the energy delivered to the material, and, consequently, increase the economic efficiency of the activation process.


Asunto(s)
Biomasa , Pared Celular/química , Lignina/química , Plantas/química , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...