Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 15(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38786630

RESUMEN

Titanium continues to be the gold standard in the field of osteosynthesis materials. This also applies to pediatric craniofacial surgery. Various resorbable materials have already been developed in order to avoid costly and risky second operations to remove metal in children. However, none of these resorbable materials have been able to completely replace the previous gold standard, titanium, in a satisfactory manner. This has led to the need for a new resorbable osteosynthesis material that fulfills the requirements for biocompatibility, stability, and uniform resorption. In our previous in vitro and in vivo work, we were able to show that molybdenum fulfills these requirements. To further confirm these results, we conducted a proof of concept in four domestic pigs, each of which was implanted with a resorbable molybdenum implant. The animals were then examined daily for local inflammatory parameters. After 54 days, the animals were euthanized with subsequent computer tomography imaging. We also removed the implants together with the surrounding tissue and parts of the spleen, liver, and kidney for histopathological evaluation. The molybdenum implants were also analyzed metallographically and using scanning electron microscopy. A blood sample was taken pre- and post-operatively. None of the animals showed clinical signs of inflammation over the entire test period. Histopathologically, good tissue compatibility was found. Early signs of degradation were observed after 54 days, which were not sufficient for major resorption. Resorption is expected with longer in situ residence times based on results of similar earlier investigations.

2.
Acta Biomater ; 178: 330-339, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432350

RESUMEN

Cardiac pacing with temporary epicardial pacing wires (TEPW) is used to treat rhythm disturbances after cardiac surgery. Occasionally, TEPW cannot be mechanically extracted and remain in the thorax, where they may rarely cause serious complications like migration and infection. We aim to develop bioresorbable TEPW that will dissolve over time even if postoperative removal is unsuccessful. In the present study, we demonstrate a completely bioresorbable design using molybdenum (Mo) as electric conductor and the resorbable polymers poly(D, L-lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) for electrically insulating double-coating. We compared the pacing properties of these Mo TEPW demonstrators to conventional steel TEPW in Langendorff-perfused rat hearts and observed similar functionality. In vitro, static immersion tests in simulated body fluid for up to 28 days elucidated the degradation behaviour of uncoated Mo strands and the influence of polymer coating thereon. Degradation was considerably reduced in double-coated Mo TEPW compared to the uncoated and the PLGA-coated condition. Furthermore, we confirmed good biocompatibility of Mo degradation products in the form of low cytotoxicity in cell cultures of human cardiomyocytes and cardiac fibroblasts. STATEMENT OF SIGNIFICANCE: Temporary pacing wires are routinely implanted on the heart surface to treat rhythm disturbances in the days following cardiac surgery. Subsequently, these wires are to be removed. When removal attempts are unsuccessful, wires are cut at skin level and the remainders are left inside the chest. Retained fragments may migrate within the body or become a centre of infection. These complications may be prevented using resorbable pacing wires. We manufactured completely resorbable temporary pacing wires using molybdenum as electrical conductor and assessed their function, degradation and biological compatibility. Our study represents an important step in the development of a safer approach to the treatment of rhythm disturbances after cardiac surgery.


Asunto(s)
Estimulación Cardíaca Artificial , Marcapaso Artificial , Humanos , Animales , Ratas , Molibdeno/farmacología , Implantes Absorbibles , Pericardio
3.
Materials (Basel) ; 14(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947370

RESUMEN

The biocompatibility and degradation behavior of pure molybdenum (Mo) as a bioresorbable metallic material (BMM) for implant applications were investigated. In vitro degradation of a commercially available Mo wire (ø250 µm) was examined after immersion in modified Kokubo's SBF for 28 days at 37 °C and pH 7.4. For assessment of in vivo degradation, the Mo wire was implanted into the abdominal aorta of female Wistar rats for 3, 6 and 12 months. Microstructure and corrosion behavior were analyzed by means of SEM/EDX analysis. After explantation, Mo levels in serum, urine, aortic vessel wall and organs were investigated via ICP-OES analysis. Furthermore, histological analyses of the liver, kidneys, spleen, brain and lungs were performed, as well as blood count and differentiation by FACS analysis. Levels of the C-reactive protein were measured in blood plasma of all the animals. In vitro and in vivo degradation behavior was very similar, with formation of uniform, non-passivating and dissolving product layers without occurrence of a localized corrosion attack. The in vitro degradation rate was 101.6 µg/(cm2·d) which corresponds to 33.6 µm/y after 28 days. The in vivo degradation rates of 12, 33 and 36 µg/(cm2·d) were observed after 3, 6 and 12 months for the samples properly implanted in the aortic vessel wall. This corresponds with a degradation rate of 13.5 µm/y for the 12-month cohort. However, the magnitude of degradation strongly depended on the implant site, with the wires incorporated into the vessel wall showing the most severe degradation. Degradation of the implanted Mo wire neither induced an increase in serum or urine Mo levels nor were elevated Mo levels found in the liver and kidneys compared with the respective controls. Only in the direct vicinity of the implant in the aortic vessel wall, a significant amount of Mo was found, which, however, was far below the amounts to be expected from degrading wires. No abnormalities were detected for all timepoints in histological and blood analyses compared to the control group. The C-reactive protein levels were similar between all the groups, indicating no inflammation processes. These findings suggest that dissolved Mo from a degrading implant is physiologically transported and excreted. Furthermore, radiographic and µCT analyses revealed excellent radiopacity of Mo in tissues. These findings and the unique combination with its extraordinary mechanical properties make Mo an interesting alternative for established BMMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...