Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 96: 104797, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37716236

RESUMEN

BACKGROUND: Genomic characterisation has led to an improved understanding of adult melanoma. However, the aetiology of melanoma in children is still unclear and identifying the correct diagnosis and therapeutic strategies remains challenging. METHODS: Exome sequencing of matched tumour-normal pairs from 26 paediatric patients was performed to study the mutational spectrum of melanomas. The cohort was grouped into different categories: spitzoid melanoma (SM), conventional melanoma (CM), and other melanomas (OT). FINDINGS: In all patients with CM (n = 10) germline variants associated with melanoma were found in low to moderate melanoma risk genes: in 8 patients MC1R variants, in 2 patients variants in MITF, PTEN and BRCA2. Somatic BRAF mutations were detected in 60% of CMs, homozygous deletions of CDKN2A in 20%, TERTp mutations in 30%. In the SM group (n = 12), 5 patients carried at least one MC1R variant; somatic BRAF mutations were detected in 8.3%, fusions in 25% of the cases. No SM showed a homozygous CDKN2A deletion nor a TERTp mutation. In 81.8% of the CM/SM cases the UV damage signatures SBS7 and/or DBS1 were detected. The patient with melanoma arising in giant congenital nevus (CNM) demonstrated the characteristic NRAS Q61K mutation. INTERPRETATION: UV-radiation and MC1R germline variants are risk factors in the development of conventional and spitzoid paediatric melanomas. Paediatric CMs share genomic similarities with adult CMs while the SMs differ genetically from the CM group. Consistent genetic characterization of all paediatric melanomas will potentially lead to better subtype differentiation, treatment, and prevention in the future. FUNDING: Found in Acknowledgement.

2.
Front Cell Infect Microbiol ; 13: 1159814, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124042

RESUMEN

Introduction: Mansonella species are filarial parasites that infect humans worldwide. Although these infections are common, knowledge of the pathology and diversity of the causative species is limited. Furthermore, the lack of sequencing data for Mansonella species, shows that their research is neglected. Apart from Mansonella perstans, a potential new species called Mansonella sp "DEUX" has been identified in Gabon, which is prevalent at high frequencies. We aimed to further determine if Mansonella sp "DEUX" is a genotype of M. perstans, or if these are two sympatric species. Methods: We screened individuals in the area of Fougamou, Gabon for Mansonella mono-infections and generated de novo assemblies from the respective samples. For evolutionary analysis, a phylogenetic tree was reconstructed, and the differences and divergence times are presented. In addition, mitogenomes were generated and phylogenies based on 12S rDNA and cox1 were created. Results: We successfully generated whole genomes for M. perstans and Mansonella sp "DEUX". Phylogenetic analysis based on annotated protein sequences, support the hypothesis of two distinct species. The inferred evolutionary analysis suggested, that M. perstans and Mansonella sp "DEUX" separated around 778,000 years ago. Analysis based on mitochondrial marker genes support our hypothesis of two sympatric human Mansonella species. Discussion: The results presented indicate that Mansonella sp "DEUX" is a new Mansonella species. These findings reflect the neglect of this research topic. And the availability of whole genome data will allow further investigations of these species.


Asunto(s)
Mansonella , Simpatría , Animales , Humanos , Mansonella/genética , Filogenia , ADN Ribosómico , Secuencia de Aminoácidos
3.
Circ Res ; 132(7): e96-e113, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36891903

RESUMEN

BACKGROUND: Platelets can infiltrate ischemic myocardium and are increasingly recognized as critical regulators of inflammatory processes during myocardial ischemia and reperfusion (I/R). Platelets contain a broad repertoire of microRNAs (miRNAs), which, under certain conditions such as myocardial ischemia, may be transferred to surrounding cells or released into the microenvironment. Recent studies could demonstrate that platelets contribute substantially to the circulating miRNA pool holding the potential for so far undiscovered regulatory functions. The present study aimed to determine the role of platelet-derived miRNAs in myocardial injury and repair following myocardial I/R. METHODS: In vivo model of myocardial I/R, multimodal in vivo and ex vivo imaging approaches (light-sheet fluorescence microscopy, positron emission tomography and magnetic resonance imaging, speckle-tracking echocardiography) of myocardial inflammation and remodeling, and next-generation deep sequencing analysis of platelet miRNA expression. RESULTS: In mice with a megakaryocyte/platelet-specific knockout of pre-miRNA processing ribonuclease Dicer, the present study discloses a key role of platelet-derived miRNAs in the tightly regulated cellular processes orchestrating left ventricular remodeling after myocardial I/R following transient left coronary artery ligation. Disruption of the miRNA processing machinery in platelets by deletion of Dicer resulted in increased myocardial inflammation, impaired angiogenesis, and accelerated development of cardiac fibrosis, culminating in an increased infarct size by d7 that persisted through d28 of myocardial I/R. Worsened cardiac remodeling after myocardial infarction in mice with a platelet-specific Dicer deletion resulted in an increased fibrotic scar formation and distinguishably increased perfusion defect of the apical and anterolateral wall at day 28 post-myocardial infarction. Altogether, these observations culminated in an impaired left ventricular function and hampered long-term cardiac recovery after experimental myocardial infarction and reperfusion therapy. Treatment with the P2Y12 (P2Y purinoceptor 12) antagonist ticagrelor completely reversed increased myocardial damage and adverse cardiac remodeling observed in DicerPf4∆/Pf4∆ mice. CONCLUSIONS: The present study discloses a critical role of platelet-derived miRNA in myocardial inflammation and structural remodeling processes following myocardial I/R.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Ratones , Animales , Plaquetas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Remodelación Ventricular , Daño por Reperfusión Miocárdica/metabolismo , Isquemia Miocárdica/metabolismo , Infarto del Miocardio/patología , Enfermedad de la Arteria Coronaria/metabolismo , Inflamación/metabolismo , Modelos Animales de Enfermedad
4.
mSphere ; 6(1)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627511

RESUMEN

The majority of infections with SARS-CoV-2 are asymptomatic or mild without the necessity of hospitalization. It is of importance to reveal if these patients develop an antibody response against SARS-CoV-2 and to define which antibodies confer virus neutralization. We conducted a comprehensive serological survey of 49 patients with a mild course of disease and quantified neutralizing antibody responses against a clinical SARS-CoV-2 isolate employing human cells as targets. Four patients (8%), even though symptomatic, did not develop antibodies against SARS-CoV-2, and two other patients (4%) were positive in only one of the six serological assays employed. For the remaining 88%, antibody response against the S protein correlated with serum neutralization whereas antibodies against the nucleocapsid were poor predictors of virus neutralization. None of the sera enhanced infection of human cells with SARS-CoV-2 at any dilution, arguing against antibody-dependent enhancement of infection in our system. Regarding neutralization, only six patients (12%) could be classified as high neutralizers. Furthermore, sera from several individuals with fairly high antibody levels had only poor neutralizing activity. In addition, employing a novel serological Western blot system to characterize antibody responses against seasonal coronaviruses, we found that antibodies against the seasonal coronavirus 229E might contribute to SARS-CoV-2 neutralization. Altogether, we show that there is a wide breadth of antibody responses against SARS-CoV-2 in patients that differentially correlate with virus neutralization. This highlights the difficulty to define reliable surrogate markers for immunity against SARS-CoV-2.IMPORTANCE There is strong interest in the nature of the neutralizing antibody response against SARS-CoV-2 in infected individuals. For vaccine development, it is especially important which antibodies confer protection against SARS-CoV-2, if there is a phenomenon called antibody-dependent enhancement (ADE) of infection, and if there is cross-protection by antibodies directed against seasonal coronaviruses. We addressed these questions and found in accordance with other studies that neutralization is mediated mainly by antibodies directed against the spike protein of SARS-CoV-2 in general and the receptor binding site in particular. In our test system, utilizing human cells for infection experiments, we did not detect ADE. However, using a novel diagnostic test we found that antibodies against the coronavirus 229E might be involved in cross-protection to SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , COVID-19/inmunología , Infecciones por Coronavirus/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Acrecentamiento Dependiente de Anticuerpo/inmunología , Sitios de Unión/inmunología , Femenino , Hospitalización , Humanos , Masculino , Pruebas de Neutralización/métodos , Nucleocápside/inmunología , Estaciones del Año , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Encuestas y Cuestionarios , Vacunas/inmunología
5.
Front Neurol ; 10: 1332, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920950

RESUMEN

Background: This study's aim was to investigate a large cohort of dystonia patients for pathogenic and rare variants in the ATM gene, making use of a new, cost-efficient enrichment technology for NGS-based screening. Methods: Single molecule Molecular Inversion Probes (smMIPs) were used for targeted enrichment and sequencing of all protein coding exons and exon-intron boundaries of the ATM gene in 373 dystonia patients and six positive controls with known ATM variants. Additionally, a rare-variant association study was performed. Results: One patient (0.3%) was compound heterozygous and 21 others were carriers of variants of unknown significance (VUS) in the ATM gene. Although mutations in sporadic dystonia patients are not common, exclusion of pathogenic variants is crucial to recognize a potential tumor predisposition syndrome. SmMIPs produced similar results as routinely used NGS-based approaches. Conclusion: Our results underline the importance of implementing ATM in the routine genetic testing of dystonia patients and confirm the reliability of smMIPs and their usability for germline screenings in rare neurodegenerative conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...