Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(1): 101192, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38327807

RESUMEN

The COVID-19 pandemic has caused about seven million deaths worldwide. Preventative vaccines have been developed including Spike gp mRNA-based vaccines that provide protection to immunocompetent patients. However, patients with primary immunodeficiencies, patients with cancer, or hematopoietic stem cell transplant recipients are not able to mount robust immune responses against current vaccine approaches. We propose to target structural SARS-CoV-2 antigens (i.e., Spike gp, Membrane, Nucleocapsid, and Envelope) using circulating human antigen-presenting cells electroporated with full length SARS-CoV-2 structural protein-encoding mRNAs to activate and expand specific T cells. Based on the Th1-type cytokine and cytolytic enzyme secretion upon antigen rechallenge, we were able to generate SARS-CoV-2 specific T cells in up to 70% of unexposed unvaccinated healthy donors (HDs) after 3 subsequent stimulations and in 100% of recovered patients (RPs) after 2 stimulations. By means of SARS-CoV-2 specific TCRß repertoire analysis, T cells specific to Spike gp-derived hypomutated regions were identified in HDs and RPs despite viral genomic evolution. Hence, we demonstrated that SARS-CoV-2 mRNA-loaded antigen-presenting cells are effective activating and expanding COVID19-specific T cells. This approach represents an alternative to patients who are not able to mount adaptive immune responses to current COVID-19 vaccines with potential protection across new variants that have conserved genetic regions.

2.
Oncoimmunology ; 9(1): 1792625, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33101771

RESUMEN

Adoptive T cell therapy has proven effective against hematologic malignancies and demonstrated efficacy against a variety of solid tumors in preclinical studies and clinical trials. Nonetheless, antitumor responses against solid tumors remain modest, highlighting the need to enhance the effectiveness of this therapy. Genetic modification of T cells with RNA has been explored to enhance T-cell antigen specificity, effector function, and migration to tumor sites, thereby potentiating antitumor immunity. This review describes the rationale for RNA-electroporated T cell modifications and provides an overview of their applications in preclinical and clinical investigations for the treatment of hematologic malignancies and solid tumors.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Neoplasias/terapia , ARN
3.
Mol Ther ; 27(4): 837-849, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30448196

RESUMEN

With the presence of the blood-brain barrier (BBB), successful immunotherapeutic drug delivery to CNS malignancies remains a challenge. Immunomodulatory agents, such as cytokines, can reprogram the intratumoral microenvironment; however, systemic cytokine delivery has limited access to the CNS. To bypass the limitations of systemically administered cytokines, we investigated if RNA-modified T cells could deliver macromolecules directly to brain tumors. The abilities of T cells to cross the BBB and mediate direct cytotoxic killing of intracranial tumors make them an attractive tool as biological carriers. Using T cell mRNA electroporation, we demonstrated that activated T cells can be modified to secrete granulocyte macrophage colony-stimulating factor (GM-CSF) protein while retaining their inherent effector functions in vitro. GM-CSF RNA-modified T cells effectively delivered GM-CSF to intracranial tumors in vivo and significantly extended overall survival in an orthotopic treatment model. Importantly, GM-CSF RNA-modified T cells demonstrated superior anti-tumor efficacy as compared to unmodified T cells alone or in combination with systemic administration of recombinant GM-CSF. Anti-tumor effects were associated with increased IFN-γ secretion locally within the tumor microenvironment and systemic antigen-specific T cell expansion. These findings demonstrate that RNA-modified T cells may serve as a versatile platform for the effective delivery of biological agents to CNS tumors.


Asunto(s)
Neoplasias Encefálicas/terapia , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Inmunoterapia Adoptiva/métodos , ARN/genética , Linfocitos T/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Supervivencia Celular/genética , Modelos Animales de Enfermedad , Factor Estimulante de Colonias de Granulocitos y Macrófagos/uso terapéutico , Proteínas Fluorescentes Verdes/metabolismo , Interferón gamma/biosíntesis , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transfección/métodos , Microambiente Tumoral/genética
4.
Pharmacol Biochem Behav ; 103(3): 684-91, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23178315

RESUMEN

The brain is extremely vulnerable to teratogenic insults during the brain growth spurt, a period that starts during the third trimester of human gestation and is characterized by synaptogenesis establishment of neuronal circuits. While the treatment of epilepsy during pregnancy increases the risk of neurodevelopmental disorders in offspring, the consequences of exposure to anticonvulsants during the brain growth spurt remain poorly known. Here we investigate whether exposure to sodium valproate (VPA) during a similar period in rats impairs spatial learning of juvenile rats. Long-Evans rats were exposed to VPA (200mg/kg) or saline solution (SAL) every other day between postnatal day (PN) 4 and PN10. At PN23 and PN30, Morris water maze performance was evaluated during 6 consecutive days. In the group of animals which started their tests at PN23, the VPA exposure impaired both, swimming speed and learning/memory performance. Interestingly, no differences were observed between VPA and control animals tested from PN30 to PN35. Our data suggests that the neurobehavioral deficits caused by VPA exposure during the brain growth spurt are transitory.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Aprendizaje por Laberinto/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/fisiología , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Long-Evans , Maduración Sexual , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Tasa de Supervivencia , Factores de Tiempo
5.
Exp Neurol ; 228(1): 138-48, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21215743

RESUMEN

Epilepsy is one of the most common neurologic disorders and affects 0.5 to 1% of pregnant women. The use of antiepileptic drugs, which is usually continued throughout pregnancy, can cause in offspring mild to severe sensory deficits. Neuronal selectivity to stimulus orientation is a basic functional property of the visual cortex that is crucial for perception of shapes and borders. Here we investigate the effects of early exposure to valproic acid (Val) and levetiracetam (Lev), commonly used antiepileptic drugs, on the development of cortical neuron orientation selectivity and organization of cortical orientation columns. Ferrets pups were exposed to Val (200mg/kg), Lev (100mg/kg) or saline every other day between postnatal day (P) 10 and P30, a period roughly equivalent to the third trimester of human gestation. Optical imaging of intrinsic signals or single-unit recordings were examined at P42-P84, when orientation selectivity in the ferret cortex has reached a mature state. Optical imaging of intrinsic signals revealed decreased contrast of orientation maps in Val- but not Lev- or saline-treated animals. Moreover, single-unit recordings revealed that early Val treatment also reduced orientation selectivity at the cellular level. These findings indicate that Val exposure during a brief period of development disrupts cortical processing of sensory information at a later age and suggest a neurobiological substrate for some types of sensory deficits in fetal anticonvulsant syndrome.


Asunto(s)
Ácido Valproico/administración & dosificación , Corteza Visual/efectos de los fármacos , Corteza Visual/crecimiento & desarrollo , Factores de Edad , Animales , Animales Recién Nacidos , Femenino , Hurones , Levetiracetam , Orientación/efectos de los fármacos , Orientación/fisiología , Piracetam/administración & dosificación , Piracetam/análogos & derivados , Piracetam/toxicidad , Privación Sensorial/fisiología , Ácido Valproico/toxicidad
6.
J Neurosci ; 30(7): 2513-20, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20164336

RESUMEN

Neuronal plasticity deficits underlie many of the neurobehavioral problems seen in fetal alcohol spectrum disorders (FASD). Recently, we showed that third trimester alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of cortical regions responsive to the deprived eye in normal animals, but not in ferrets exposed early to alcohol. This plasticity deficit can be reversed if alcohol-exposed animals are treated with a phosphodiesterase type 1 (PDE1) inhibitor during the period of monocular deprivation. PDE1 inhibition can increase cAMP and cGMP levels, activating transcription factors such as the cAMP response element binding protein (CREB) and the serum response factor (SRF). SRF is important for many plasticity processes such as LTP, LTD, spine motility, and axonal pathfinding. Here we attempt to rescue OD plasticity in alcohol-treated ferrets using a Sindbis viral vector to express a constitutively active form of SRF during the period of monocular deprivation. Using optical imaging of intrinsic signals and single-unit recordings, we observed that overexpression of a constitutively active form of SRF, but neither its dominant-negative nor GFP, restored OD plasticity in alcohol-treated animals. Surprisingly, this restoration was observed throughout the extent of the primary visual cortex and most cells infected by the virus were positive for GFAP rather than NeuN. This finding suggests that overexpression of SRF in astrocytes may reduce the deficits in neuronal plasticity seen in models of FASD.


Asunto(s)
Predominio Ocular/fisiología , Plasticidad Neuronal/fisiología , Factor de Respuesta Sérica/metabolismo , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Diagnóstico por Imagen/métodos , Etanol/farmacología , Hurones , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Masculino , Microscopía Confocal/métodos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fosfopiruvato Hidratasa/metabolismo , Privación Sensorial/fisiología , Factor de Respuesta Sérica/genética , Virus Sindbis/genética , Transducción Genética/métodos , Corteza Visual/citología , Corteza Visual/metabolismo , Vías Visuales/metabolismo
7.
Int J Dev Neurosci ; 28(2): 189-94, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19931609

RESUMEN

Several mechanisms underlying ethanol action in GABAergic synapses have been proposed, one of these mechanisms is on GABA release. Here, we report that in ovo exposure to ethanol induces an increase on GABA release in the embryonic chick retina. Eleven-day-old chick embryos (E11) received an injection of either phosphate buffer saline (PBS) or ethanol (10%, v/v, diluted in PBS), and were allowed to develop until E16. A single glutamate stimulus (2 mM) showed approximately a 40% increase on GABA release in E16 retinas when compared to controls. The effect was dependent on NMDA receptors and GAD65 mRNA levels, which were increased following the ethanol treatment. However, the numbers of GABA-, GAD-, and NR1-immunoreactive cells, and the expression levels of these proteins, were not affected. We conclude that ethanol treatment at a time point when synapses are being formed during development selectively increases GABA release in the retina via a NMDA receptor-dependent process.


Asunto(s)
Etanol/administración & dosificación , Retina/embriología , Retina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Embrión de Pollo , Pollos , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA