Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Haematologica ; 106(4): 1086-1096, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33538149

RESUMEN

Pathogen reduction (PR) technologies for blood components have been established to reduce the residual risk of known and emerging infectious agents. THERAFLEX UVPlatelets, a novel UVC light-based PR technology for platelet concentrates, works without photoactive substances. This randomized, controlled, double-blind, multicenter, noninferiority trial was designed to compare the efficacy and safety of UVC-treated platelets to that of untreated platelets in thrombocytopenic patients with hematologic-oncologic diseases. Primary objective was to determine non-inferiority of UVC-treated platelets, assessed by the 1-hour corrected count increment (CCI) in up to eight per-protocol platelet transfusion episodes. Analysis of the 171 eligible patients showed that the defined non-inferiority margin of 30% of UVC-treated platelets was narrowly missed as the mean differences in 1-hour CCI between standard platelets versus UVC-treated platelets for intention-to-treat and perprotocol analyses were 18.2% (95% confidence interval [CI]: 6.4%; 30.1) and 18.7% (95% CI: 6.3%; 31.1%), respectively. In comparison to the control, the UVC group had a 19.2% lower mean 24-hour CCI and was treated with an about 25% higher number of platelet units, but the average number of days to next platelet transfusion did not differ significantly between both treatment groups. The frequency of low-grade adverse events was slightly higher in the UVC group and the frequencies of refractoriness to platelet transfusion, platelet alloimmunization, severe bleeding events, and red blood cell transfusions were comparable between groups. Our study suggests that transfusion of pathogen-reduced platelets produced with the UVC technology is safe but non-inferiority was not demonstrated. (The German Clinical Trials Register number: DRKS00011156).


Asunto(s)
Enfermedades Hematológicas , Trombocitopenia , Plaquetas , Hemorragia , Humanos , Transfusión de Plaquetas , Trombocitopenia/etiología , Trombocitopenia/terapia
2.
Transfusion ; 55(2): 337-47, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25134439

RESUMEN

BACKGROUND: Residual white blood cells (WBCs) in cellular blood components induce a variety of adverse immune events, including nonhemolytic febrile transfusion reactions, alloimmunization to HLA antigens, and transfusion-associated graft-versus-host disease (TA-GVHD). Pathogen reduction (PR) methods such as the ultraviolet C (UVC) light-based THERAFLEX UV-Platelets system were developed to reduce the risk of transfusion-transmitted infection. As UVC light targets nucleic acids, it interferes with the replication of both pathogens and WBCs. This preclinical study aimed to evaluate the ability of UVC light to inactivate contaminating WBCs in platelet concentrates (PCs). STUDY DESIGN AND METHODS: The in vitro and in vivo function of WBCs from UVC-treated PCs was compared to that of WBCs from gamma-irradiated and untreated PCs by measuring cell viability, proliferation, cytokine secretion, antigen presentation in vitro, and xenogeneic GVHD responses in a humanized mouse model. RESULTS: UVC light was at least as effective as gamma irradiation in preventing GVHD in the mouse model. It was more effective in suppressing T-cell proliferation (>5-log reduction in the limiting dilution assay), cytokine secretion, and antigen presentation than gamma irradiation. CONCLUSIONS: The THERAFLEX UV-Platelets (MacoPharma) PR system can substitute gamma irradiation for TA-GVHD prophylaxis in platelet (PLT) transfusion. Moreover, UVC treatment achieves suppression of antigen presentation and inhibition of cytokine accumulation during storage of PCs, which has potential benefits for transfusion recipients.


Asunto(s)
Plaquetas/patología , Seguridad de la Sangre/métodos , Procedimientos de Reducción del Leucocitos/métodos , Transfusión de Plaquetas , Rayos Ultravioleta , Animales , Plaquetas/citología , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Femenino , Rayos gamma , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Masculino , Ratones , Ratones Endogámicos NOD
3.
Transfusion ; 52(11): 2414-26, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22404822

RESUMEN

BACKGROUND: The THERAFLEX ultraviolet (UV) platelets (PLTs) pathogen reduction system for PLT concentrates (PCs) operates using ultraviolet C (UVC) light at a wavelength of 254 nm. UVC treatment can potentially alter proteins, which may affect drug tolerance in humans and influence the immunogenicity of blood products. This preclinical study in beagle dogs was designed to evaluate the safety pharmacology of UVC-irradiated PCs after intravenous administration and to determine whether they are capable of eliciting humoral responses to PLTs and plasma proteins. STUDY DESIGN AND METHODS: Six beagle dogs each were transfused once every other week for 10 weeks with UVC-irradiated or nonirradiated PCs. All PCs were autologous canine single-donor products prepared from whole blood. Safety pharmacology variables were regularly assessed. The impact of UVC irradiation on PLT and plasma proteomes was analyzed by one- and two-dimensional gel electrophoresis. Serum samples were tested for UVC-induced antibodies by Western blot and flow cytometry. RESULTS: Dogs transfused with UVC-irradiated PCs showed no signs of local or systemic intolerance. Few but significant changes in PLT protein integrity were observed after UVC irradiation. Even after repeated administration of UVC-irradiated PCs, no antibodies against UVC-exposed plasma or PLT proteins were detected. CONCLUSIONS: Repeated transfusions of autologous UVC-treated PCs were well tolerated in all dogs studied. UVC irradiation did not cause significant plasma or PLT protein modifications capable of inducing specific antibody responses in the dogs. High-resolution proteomics combined with antibody analysis introduces a comprehensive and sensitive method for screening of protein modifications and antibodies specific for pathogen reduction treatment.


Asunto(s)
Plaquetas/inmunología , Plaquetas/efectos de la radiación , Transfusión de Plaquetas/métodos , Rayos Ultravioleta , Animales , Anticuerpos/sangre , Proteínas Sanguíneas/inmunología , Seguridad de la Sangre/métodos , Transfusión de Sangre Autóloga , Perros , Citometría de Flujo , Tolerancia Inmunológica/inmunología , Masculino , Modelos Animales , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...