Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37107713

RESUMEN

The present report describes exposure to respirable silica and dust in the construction industry, as well as means to manage them. The average exposure in studied work tasks (n = 148) amounted to 64% of the Finnish OEL value of 0.05 mg/m3. While 10% of exposure estimates exceeded the OEL, the 60% percentile was well below 10% of the OEL, as was the median exposure. In other words, exposure was low in more than half of the tasks. Work tasks where exposure was low included construction cleaning, work management, installation of concrete elements, rebar laying, driving work machines equipped with cabin air intake filtration, and landscaping, in addition to some road construction tasks. Excessive exposure (>OEL) was related to not using respiratory protection at all or not using it for long enough after the dusty activity ceased. Excessive exposures were found in sandblasting, dismantling facade elements, diamond drilling, drilling hollow-core slabs, drilling with a drilling rig, priming of explosives, tiling, use of cabinless earthmoving machines, and jackhammering, regardless of whether the hammering took place in an underpressurized compartment or not. Even in these tasks, it was possible to perform the work safely, following good dust prevention measures and, when necessary, using respiratory protection suitable for the job. Furthermore, in all tasks with generally low exposure, one could be significantly exposed through the general air or by making poor choices in terms of dust control.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Cuarzo/análisis , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Exposición por Inhalación/prevención & control , Exposición por Inhalación/análisis , Dióxido de Silicio/análisis , Polvo/análisis , Contaminantes Ocupacionales del Aire/análisis , Materiales de Construcción
2.
Toxics ; 10(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35878259

RESUMEN

Nanotechnology is a growing megatrend in industrial production and innovations. Many applications utilize engineered nanomaterials (ENMs) that are potentially released into the atmospheric environment, e.g., via direct stack emissions from production facilities. Limited information exists on adverse effects such ENM releases may have on human health and the environment. Previous exposure modeling approaches have focused on large regional compartments, into which the released ENMs are evenly mixed. However, due to the localization of the ENM release and removal processes, potentially higher airborne concentrations and deposition fluxes are obtained around the production facilities. Therefore, we compare the ENM concentrations from a dispersion model to those from the uniformly mixed compartment approach. For realistic release scenarios, we based the modeling on the case study measurement data from two TiO2 nanomaterial handling facilities. In addition, we calculated the distances, at which 50% of the ENMs are deposited, serving as a physically relevant metric to separate the local scale from the regional scale, thus indicating the size of the high exposure and risk region near the facility. As a result, we suggest a local scale compartment to be implemented in the multicompartment nanomaterial exposure models. We also present a computational tool for local exposure assessment that could be included to regulatory guidance and existing risk governance networks.

3.
Small ; 16(6): e1904749, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31913582

RESUMEN

Advanced material development, including at the nanoscale, comprises costly and complex challenges coupled to ensuring human and environmental safety. Governmental agencies regulating safety have announced interest toward acceptance of safety data generated under the collective term New Approach Methodologies (NAMs), as such technologies/approaches offer marked potential to progress the integration of safety testing measures during innovation from idea to product launch of nanomaterials. Divided in overall eight main categories, searchable databases for grouping and read across purposes, exposure assessment and modeling, in silico modeling of physicochemical structure and hazard data, in vitro high-throughput and high-content screening assays, dose-response assessments and modeling, analyses of biological processes and toxicity pathways, kinetics and dose extrapolation, consideration of relevant exposure levels and biomarker endpoints typify such useful NAMs. Their application generally agrees with articulated stakeholder needs for improvement of safety testing procedures. They further fit for inclusion and add value in nanomaterials risk assessment tools. Overall 37 of 50 evaluated NAMs and tiered workflows applying NAMs are recommended for considering safer-by-design innovation, including guidance to the selection of specific NAMs in the eight categories. An innovation funnel enriched with safety methods is ultimately proposed under the central aim of promoting rigorous nanomaterials innovation.


Asunto(s)
Ciencia de los Materiales , Nanoestructuras , Seguridad , Pruebas de Toxicidad , Simulación por Computador , Humanos , Ciencia de los Materiales/métodos , Ciencia de los Materiales/tendencias , Nanoestructuras/normas , Medición de Riesgo
4.
Environ Sci Technol ; 53(23): 13618-13628, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31697477

RESUMEN

Many studies exist that characterize the aerosol emissions from fused filament fabrication three-dimensional (3D) printers. However, nanocluster aerosol (NCA) particles, that is particles in a size range under 3 nm, are rarely studied. The purpose of this study was to characterize the NCA emissions and the contribution of NCA to the total particle number emissions from a 3D printer. We used a particle size magnifier and a scanning mobility particle sizer to measure the time evolution of particle size distribution, which was used to calculate the average NCA emission rates during a printer operation in a chamber. The NCA emission rates ranged from 1.4 × 106 to 7.3 × 109 s-1 depending on the applied combination of filament material and nozzle temperature, showing increasing emission with increasing temperature. The NCA emissions constitute from 9 to 48% of the total emissions, that is, almost half of the particle emissions may have been previously neglected. Therefore, it is essential to include the low NCA size range in, for example, future 3D-printer-testing protocols, emission measurement standards, and risk management measures.


Asunto(s)
Contaminación del Aire Interior , Aerosoles , Tamaño de la Partícula , Material Particulado , Impresión Tridimensional , Temperatura , Emisiones de Vehículos
5.
Part Fibre Toxicol ; 16(1): 23, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31182125

RESUMEN

BACKGROUND: Little is known about the exposure levels and adverse health effects of occupational exposure to airplane emissions. Diesel exhaust particles are classified as carcinogenic to humans and jet engines produce potentially similar soot particles. Here, we evaluated the potential occupational exposure risk by analyzing particles from a non-commercial airfield and from the apron of a commercial airport. Toxicity of the collected particles was evaluated alongside NIST standard reference diesel exhaust particles (NIST2975) in terms of acute phase response, pulmonary inflammation, and genotoxicity after single intratracheal instillation in mice. RESULTS: Particle exposure levels were up to 1 mg/m3 at the non-commercial airfield. Particulate matter from the non-commercial airfield air consisted of primary and aggregated soot particles, whereas commercial airport sampling resulted in a more heterogeneous mixture of organic compounds including salt, pollen and soot, reflecting the complex occupational exposure at an apron. The particle contents of polycyclic aromatic hydrocarbons and metals were similar to the content in NIST2975. Mice were exposed to doses 6, 18 and 54 µg alongside carbon black (Printex 90) and NIST2975 and euthanized after 1, 28 or 90 days. Dose-dependent increases in total number of cells, neutrophils, and eosinophils in bronchoalveolar lavage fluid were observed on day 1 post-exposure for all particles. Lymphocytes were increased for all four particle types on 28 days post-exposure as well as for neutrophil influx for jet engine particles and carbon black nanoparticles. Increased Saa3 mRNA levels in lung tissue and increased SAA3 protein levels in plasma were observed on day 1 post-exposure. Increased levels of DNA strand breaks in bronchoalveolar lavage cells and liver tissue were observed for both particles, at single dose levels across doses and time points. CONCLUSIONS: Pulmonary exposure of mice to particles collected at two airports induced acute phase response, inflammation, and genotoxicity similar to standard diesel exhaust particles and carbon black nanoparticles, suggesting similar physicochemical properties and toxicity of jet engine particles and diesel exhaust particles. Given this resemblance as well as the dose-response relationship between diesel exhaust exposure and lung cancer, occupational exposure to jet engine emissions at the two airports should be minimized.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Aeropuertos , Daño del ADN , Pulmón/efectos de los fármacos , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/farmacocinética , Animales , Biomarcadores/sangre , Líquido del Lavado Bronquioalveolar/citología , Femenino , Pulmón/metabolismo , Pulmón/ultraestructura , Ratones Endogámicos C57BL , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Material Particulado/análisis , Material Particulado/farmacocinética , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Proteína Amiloide A Sérica/análisis , Factores de Tiempo , Distribución Tisular
6.
Environ Pollut ; 241: 96-105, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29803029

RESUMEN

The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 µm2/cm3 measured close to the ground level to 36-40 µm2/cm3 measured close to the rooftop level of the street canyon, and further to 16-26 µm2/cm3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Finlandia , Modelos Teóricos , Emisiones de Vehículos/análisis , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...