Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Chem Inf Model ; 60(3): 1302-1316, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32130862

RESUMEN

We define a molecular caging complex as a pair of molecules in which one molecule (the "host" or "cage") possesses a cavity that can encapsulate the other molecule (the "guest") and prevent it from escaping. Molecular caging complexes can be useful in applications such as molecular shape sorting, drug delivery, and molecular immobilization in materials science, to name just a few. However, the design and computational discovery of new caging complexes is a challenging task, as it is hard to predict whether one molecule can encapsulate another because their shapes can be quite complex. In this paper, we propose a computational screening method that predicts whether a given pair of molecules form a caging complex. Our method is based on a caging verification algorithm that was designed by our group for applications in robotic manipulation. We tested our algorithm on three pairs of molecules that were previously described in a pioneering work on molecular caging complexes and found that our results are fully consistent with the previously reported ones. Furthermore, we performed a screening experiment on a data set consisting of 46 hosts and four guests and used our algorithm to predict which pairs are likely to form caging complexes. Our method is computationally efficient and can be integrated into a screening pipeline to complement experimental techniques.


Asunto(s)
Algoritmos
2.
PeerJ Comput Sci ; 4: e153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-33816807

RESUMEN

We describe the Coefficient-Flow algorithm for calculating the bounding chain of an $(n-1)$-boundary on an $n$-manifold-like simplicial complex $S$. We prove its correctness and show that it has a computational time complexity of O(|S (n-1)|) (where S (n-1) is the set of $(n-1)$-faces of $S$). We estimate the big- $O$ coefficient which depends on the dimension of $S$ and the implementation. We present an implementation, experimentally evaluate the complexity of our algorithm, and compare its performance with that of solving the underlying linear system.

3.
Data Brief ; 11: 491-498, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28289699

RESUMEN

We present a novel approach and database which combines the inexpensive generation of 3D object models via monocular or RGB-D camera images with 3D printing and a state of the art object tracking algorithm. Unlike recent efforts towards the creation of 3D object databases for robotics, our approach does not require expensive and controlled 3D scanning setups and aims to enable anyone with a camera to scan, print and track complex objects for manipulation research. The proposed approach results in detailed textured mesh models whose 3D printed replicas provide close approximations of the originals. A key motivation for utilizing 3D printed objects is the ability to precisely control and vary object properties such as the size, material properties and mass distribution in the 3D printing process to obtain reproducible conditions for robotic manipulation research. We present CapriDB - an extensible database resulting from this approach containing initially 40 textured and 3D printable mesh models together with tracking features to facilitate the adoption of the proposed approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...