Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362210

RESUMEN

Xylanases can boost pulp bleachability in Elemental Chlorine Free (ECF) processes, but their industrial implementation for producing bleached kraft pulps is not straightforward. It requires enzymes to be active and stable at the extreme conditions of alkalinity and high temperature typical of this industrial process; most commercial enzymes are unable to withstand these conditions. In this work, a novel highly thermo and alkaline-tolerant xylanase from Pseudothermotoga thermarum was overproduced in E. coli and tested as a bleaching booster of hardwood kraft pulps to save chlorine dioxide (ClO2) during ECF bleaching. The extremozyme-stage (EXZ) was carried out at 90 °C and pH 10.5 and optimised at lab scale on an industrial oxygen-delignified eucalyptus pulp, enabling us to save 15% ClO2 to reach the mill brightness, and with no detrimental effect on paper properties. Then, the EXZ-assisted bleaching sequence was validated at pilot scale under industrial conditions, achieving 25% ClO2 savings and reducing the generation of organochlorinated compounds (AOX) by 18%, while maintaining pulp quality and papermaking properties. Technology reproducibility was confirmed with another industrial kraft pulp from a mix of hardwoods. The new enzymatic technology constitutes a realistic step towards environmentally friendly production of kraft pulps through industrial integration of biotechnology.


Asunto(s)
Eucalyptus , Extremófilos , Escherichia coli , Reproducibilidad de los Resultados , Eucalyptus/química , Cloro , Papel
2.
Sci Rep ; 12(1): 15743, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131073

RESUMEN

A gene construct encoding a xylanase, which is active in extreme conditions of temperature and alkaline pH (90 °C, pH 10.5), has been transitorily expressed with high efficiency in Nicotiana benthamiana using a viral vector. The enzyme, targeted to the apoplast, accumulates in large amounts in plant tissues in as little as 7 days after inoculation, without detrimental effects on plant growth. The properties of the protein produced by the plant, in terms of resistance to temperature, pH, and enzymatic activity, are equivalent to those observed when Escherichia coli is used as a host. Purification of the plant-produced recombinant xylanase is facilitated by exporting the protein to the apoplastic space. The production of this xylanase by N. benthamiana, which avoids the hindrances derived from the use of E. coli, namely, intracellular production requiring subsequent purification, represents an important step for potential applications in the food industry in which more sustainable and green products are continuously demanded. As an example, the use of the enzyme producing prebiotic xylooligosdaccharides from xylan is here reported.


Asunto(s)
Extremófilos , Xilanos , Endo-1,4-beta Xilanasas/química , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Extremófilos/metabolismo , Glucuronatos , Concentración de Iones de Hidrógeno , Hidrólisis , Oligosacáridos , Prebióticos , Temperatura , Nicotiana/genética , Nicotiana/metabolismo , Xilanos/metabolismo
3.
Comput Struct Biotechnol J ; 19: 2676-2686, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093984

RESUMEN

Endoxylanases active under extreme conditions of temperature and alkalinity can replace the use of highly pollutant chemicals in the pulp and paper industry. Searching for enzymes with these properties, we carried out a comprehensive bioinformatics study of the GH10 family. The phylogenetic analysis allowed the construction of a radial cladogram in which protein sequences putatively ascribed as thermophilic and alkaliphilic appeared grouped in a well-defined region of the cladogram, designated TAK Cluster. One among five TAK sequences selected for experimental analysis (Xyn11) showed extraordinary xylanolytic activity under simultaneous conditions of high temperature (90 °C) and alkalinity (pH 10.5). Addition of a carbohydrate binding domain (CBM2) at the C-terminus of the protein sequence further improved the activity of the enzyme at high pH. Xyn11 structure, which has been solved at 1.8 Å resolution by X-ray crystallography, reveals an unusually high number of hydrophobic, ionic and hydrogen bond atomic interactions that could account for the enzyme's extremophilic nature.

4.
Biotechnol Biofuels ; 13(1): 198, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33372612

RESUMEN

BACKGROUND: Xylanases are one of the most extensively used enzymes for biomass digestion. However, in many instances, their use is limited by poor performance under the conditions of pH and temperature required by the industry. Therefore, the search for xylanases able to function efficiently at alkaline pH and high temperature is an important objective for different processes that use lignocellulosic substrates, such as the production of paper pulp and biofuels. RESULTS: A comprehensive in silico analysis of family GH11 sequences from the CAZY database allowed their phylogenetic classification in a radial cladogram in which sequences of known or presumptive thermophilic and alkalophilic xylanases appeared in three clusters. Eight sequences from these clusters were selected for experimental analysis. The coding DNA was synthesized, cloned and the enzymes were produced in E. coli. Some of these showed high xylanolytic activity at pH values > 8.0 and temperature > 80 °C. The best enzymes corresponding to sequences from Dictyoglomus thermophilum (Xyn5) and Thermobifida fusca (Xyn8). The addition of a carbohydrate-binding module (CBM9) to Xyn5 increased 4 times its activity at 90 °C and pH > 9.0. The combination of Xyn5 and Xyn8 was proved to be efficient for the saccharification of alkali pretreated rice straw, yielding xylose and xylooligosaccharides. CONCLUSIONS: This study provides a fruitful approach for the selection of enzymes with suitable properties from the information contained in extensive databases. We have characterized two xylanases able to hydrolyze xylan with high efficiency at pH > 8.0 and temperature > 80 °C.

5.
Curr Protoc Mol Biol ; 130(1): e116, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32150346

RESUMEN

Many synthetic biologists have adopted methods based on Type IIS restriction enzymes and Golden Gate technology in their cloning procedures, as these enable the combinatorial assembly of modular elements in a very efficient way following standard rules. GoldenBraid (GB) is a Golden Gate-based modular cloning system that, in addition, facilitates the engineering of large multigene constructs and the exchange of DNA parts as result of its iterative cloning scheme. GB was initially developed specifically for plant synthetic biology, and it has been subsequently extended and adapted to other organisms such as Saccharomyces cerevisiae, filamentous fungi, and human cells by incorporating a number of host-specific features into its basic scheme. Here we describe the general GB cloning procedure and provide detailed protocols for its adaptation to filamentous fungi-a GB variant known as FungalBraid. The assembly of a cassette for gene disruption by homologous recombination, a fungal-specific extension of the GB utility, is also shown. Development of FungalBraid was relatively straightforward, as both plants and fungi can be engineered using the same binary plasmids via Agrobacterium-mediated transformation. We also describe the use of a set of web-based tools available at the GB website that assist users in all cloning procedures. The availability of plant and fungal versions of GB will facilitate genetic engineering in these industrially relevant organisms. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Software-assisted modular DNA assembly of a two gene expression-cassette with GB Basic Protocol 2: Agrobacterium tumefaciens-mediated transformation of filamentous fungi Basic Protocol 3: Software-assisted modular DNA assembly of a gene disruption-cassette using GB Basic Protocol 4: Obtaining disruption transformants.


Asunto(s)
Clonación Molecular/métodos , Hongos/genética , Ingeniería Genética/métodos , Plantas/genética , Secuencia de Bases , ADN/genética , Enzimas de Restricción del ADN/metabolismo , Expresión Génica , Vectores Genéticos , Células HEK293 , Humanos , Plásmidos/genética , Biología Sintética/métodos
6.
Int J Biol Macromol ; 151: 602-608, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32061698

RESUMEN

Thermostable ß-galactosidase (TmLac) has been immobilized as hybrid inorganic-protein nanoflowers using salts of Cu2+, Mn2+, Zn2+, Co2+ and Ca2+ as the inorganic component. The incorporation efficiency of enzyme into the nanoflowers was higher than 95% for a protein concentration of 0.05 mg/mL. The structure, activity and recyclability of the nanoflowers with different chemical composition were analyzed. Ca2+, Mn2+ and Co2+ nanoflowers showed a level of lactase activity equivalent to their same content of free enzyme. Cu2+nanoflowers showed only marginal enzyme activity in agreement with the inhibitory effect of this cation on the enzyme. TmLac nanoflowers provide an efficient methodology for enzyme immobilization and recyclability. TmLac-Ca2+ nanoflowers presented the best properties for lactose hydrolysis both in buffered and in milk, and could be reused in five consecutive cycles.


Asunto(s)
Lactosa/química , Leche/química , Nanoestructuras/química , Proteínas/química , Animales , Enzimas Inmovilizadas , Hidrólisis , Cinética , Nanoestructuras/ultraestructura , beta-Galactosidasa/química
7.
ACS Chem Biol ; 15(1): 179-188, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31874027

RESUMEN

Lactose intolerance is a common digestive disorder that affects a large proportion of the adult human population. The severity of the symptoms is highly variable, depending on the susceptibility to the sugar and the amount digested. For that reason, enzymes that can be used for the production of lactose-free milk and milk derivatives have acquired singular biotechnological importance. One such case is Thermotoga maritima ß-galactosidase (TmLac). Here, we report the cryo-EM structure of TmLac at 2.0 Å resolution. The protein features a newly solved domain at its C-terminus, characteristic of the genus Thermotoga, which promotes a peculiar octameric arrangement. We have assessed the constraints imposed by the quaternary protein structure on the construction of hybrid versions of this GH2 enzyme. Carbohydrate binding modules (CBM) from the CBM2 and CBM9 families have been added at either the amino or carboxy terminus, and the structural and functional effects of such modifications have been analyzed. The results provide a basis for the rational design of hybrid enzymes that can be efficiently attached to different solid supports.


Asunto(s)
Proteínas Bacterianas/química , Microscopía por Crioelectrón/métodos , Estructura Cuaternaria de Proteína , Thermotoga maritima/enzimología , beta-Galactosidasa/química , Aminas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Carbohidratos/química , Ácidos Carboxílicos/química , Dominio Catalítico , Cristalografía por Rayos X , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos , Modelos Moleculares , Ingeniería de Proteínas/métodos , Estabilidad Proteica , Solventes/química , Relación Estructura-Actividad , Especificidad por Sustrato , beta-Galactosidasa/metabolismo
8.
Bioorg Chem ; 89: 103026, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31226649

RESUMEN

The synthesis of multivalent pyrrolidine iminosugars via CuAAC click reaction between different pyrrolidine-azide derivatives and tri- or hexavalent alkynyl scaffolds is reported. The new multimeric compounds, together with the monomeric reference, were evaluated as inhibitors against two homologous GH1 ß-glucosidases (BglA and BglB from Paenibacillus polymyxa). The multivalent inhibitors containing an aromatic moiety in the linker between the pyrrolidine and the scaffold inhibited the octameric BglA (µM range) but did not show affinity against the monomeric BglB, despite the similarity between the active site of both enzymes. A modest multivalent effect (rp/n = 12) was detected for the hexavalent inhibitor 12. Structural analysis of the complexes between the monomeric and the trimeric iminosugar inhibitors (4 and 10) and BglA showed the insertion of the inhibitors at the active site of BglA, confirming a competitive mode of inhibition as indicated by enzyme kinetics. Additionally, structural comparison of the BglA/4 complex with the reported BglB/2F-glucose complex illustrates the key determinants responsible for the inhibitory effect and explains the reasons of the inhibition of BglA and the no inhibition of BglB. Potential inhibition of other ß-glucosidases with therapeutic relevance is discussed under the light of these observations.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Iminoazúcares/farmacología , Pirrolidinas/farmacología , beta-Glucosidasa/antagonistas & inhibidores , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Iminoazúcares/síntesis química , Iminoazúcares/química , Modelos Moleculares , Estructura Molecular , Paenibacillus polymyxa/enzimología , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad , beta-Glucosidasa/aislamiento & purificación , beta-Glucosidasa/metabolismo
9.
Curr Genet ; 65(1): 139-145, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30128746

RESUMEN

Iron participates as a vital cofactor in multiple metabolic pathways. Despite its abundance, iron bioavailability is highly restricted in aerobic and alkaline environments. Therefore, living organisms have evolved multiple adaptive mechanisms to respond to iron scarcity. These strategies include a global remodeling of iron metabolism directed to optimize iron utilization. In the baker's yeast Saccharomyces cerevisiae, this metabolic reorganization is accomplished to a large extent by an mRNA-binding protein called Cth2. Yeast Cth2 belongs to a conserved family of tandem zinc finger containing proteins that specifically bind to transcripts with AU-rich elements and promote their turnover. A recent study has revealed that Cth2 also inhibits the translation of its target mRNAs (Ramos-Alonso et al., PLoS Genet 14:e1007476, https://doi.org/10.1371/journal.pgen.1007476 , 2018). Interestingly, the mammalian Cth2 ortholog known as tristetraprolin (aka TTP/TIS11/ZFP36), which is also implicated in controlling iron metabolism, promotes the decay and prevents the translation of its regulated transcripts. These observations open the possibility to study the relative contribution of altering mRNA stability and translation to the physiological adaptation to iron deficiency, the function played by the different domains within the mRNA-binding protein, and the potential factors implicated in coordinating both post-transcriptional events.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , Saccharomyces cerevisiae/genética , Adaptación Fisiológica/genética , Animales , Humanos , ARN de Hongos/genética , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
10.
Molecules ; 23(6)2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29799509

RESUMEN

The synthesis of a novel α-glucosylated derivative of pterostilbene was performed by a transglycosylation reaction using starch as glucosyl donor, catalyzed by cyclodextrin glucanotransferase (CGTase) from Thermoanaerobacter sp. The reaction was carried out in a buffer containing 20% (v/v) DMSO to enhance the solubility of pterostilbene. Due to the formation of several polyglucosylated products with CGTase, the yield of monoglucoside was increased by the treatment with a recombinant amyloglucosidase (STA1) from Saccharomyces cerevisiae (var. diastaticus). This enzyme was not able to hydrolyze the linkage between the glucose and pterostilbene. The monoglucoside was isolated and characterized by combining ESI-MS and 2D-NMR methods. Pterostilbene α-d-glucopyranoside is a novel compound. The α-glucosylation of pterostilbene enhanced its solubility in water to approximately 0.1 g/L. The α-glucosylation caused a slight loss of antioxidant activity towards ABTS˙⁺ radicals. Pterostilbene α-d-glucopyranoside was less toxic than pterostilbene for human SH-S5Y5 neurons, MRC5 fibroblasts and HT-29 colon cancer cells, and similar for RAW 264.7 macrophages.


Asunto(s)
Antineoplásicos/síntesis química , Antioxidantes/síntesis química , Proteínas Bacterianas/química , Glucano 1,4-alfa-Glucosidasa/química , Glucósidos/síntesis química , Glucosiltransferasas/química , Estilbenos/química , Animales , Antineoplásicos/farmacología , Antioxidantes/farmacología , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Glucano 1,4-alfa-Glucosidasa/biosíntesis , Glucósidos/farmacología , Glucosiltransferasas/biosíntesis , Glicosilación , Células HT29 , Humanos , Concentración 50 Inhibidora , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Células RAW 264.7 , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Solubilidad , Almidón/química , Thermoanaerobacter/química , Thermoanaerobacter/enzimología
11.
Int J Biol Macromol ; 115: 476-482, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29678790

RESUMEN

Enzymatically-active bacterial cellulose (BC) was prepared by non-covalent immobilization of a hybrid enzyme composed by a ß-galactosidase from Thermotoga maritima (TmLac) and a carbohydrate binding module (CBM2) from Pyrococcus furiosus. TmLac-CBM2 protein was bound to BC, with higher affinity at pH 6.5 than at pH 8.5 and with high specificity compared to the non-engineered enzyme. Both hydrated (HBC) and freeze-dried (DBC) bacterial cellulose showed equivalent enzyme binding efficiencies. Initial reaction rate of HBC-bound enzyme was higher than DBC-bound and both of them were lower than the free enzyme. However, enzyme performance was similar in all three cases for the hydrolysis of 5% lactose to a high extent. Reuse of the immobilized enzyme was limited by the stability of the ß-galactosidase module, whereas the CBM2 module provided stable attachment of the hybrid enzyme to the BC support, after long incubation periods (3 h) at 75 °C.


Asunto(s)
Celulosa/química , Gluconacetobacter xylinus/química , Membranas Artificiales , Ingeniería de Proteínas , Thermotoga maritima/enzimología , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Hidrólisis , Lactasa/metabolismo , beta-Galactosidasa/genética
12.
World J Microbiol Biotechnol ; 33(7): 140, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28589508

RESUMEN

We describe a procedure by which filter paper is digested with a cellulolytic enzyme preparation, obtained from Trichoderma reesei cultivated under solid state fermentation conditions and then fermented by a recombinant Saccharomyces cerevisiae strain. The yeast strain produces a ß-glucosidase encoded by the BGL1 gene from Saccharomycopsis fibuligera that quantitatively and qualitatively complements the limitations that the Trichoderma enzyme complex shows for this particular activity. The supplemental ß-glucosidase activity fuels the progression of cellulose hydrolysis and fermentation by decreasing the inhibitory effects caused by the accumulation of cellobiose and glucose. Fermentation of filter paper by this procedure yields ethanol concentrations above 70 g/L.


Asunto(s)
Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , beta-Glucosidasa/metabolismo , Biocombustibles/microbiología , Etanol/metabolismo , Fermentación , Proteínas Fúngicas/genética , Glucosa/metabolismo , Hidrólisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomycopsis/enzimología , Saccharomycopsis/genética , Trichoderma/enzimología , Trichoderma/crecimiento & desarrollo , beta-Glucosidasa/genética
13.
ACS Omega ; 2(11): 8062-8068, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023572

RESUMEN

The α-glucosidase encoded by the aglA gene of Aspergillus niger is a secreted enzyme belonging to family 31 of glycoside hydrolases. This enzyme has a retaining mechanism of action and displays transglycosylating activity that makes it amenable to be used for the synthesis of isomaltooligosaccharides (IMOs). We have expressed the aglA gene in Saccharomyces cerevisiae under control of a galactose-inducible promoter. Recombinant yeast cells expressing the aglA gene produced extracellular α-glucosidase activity about half of which appeared cell bound whereas the other half was released into the culture medium. With maltose as the substrate, panose is the main transglycosylation product after 8 h of incubation, whereas isomaltose is predominant after 24 h. Isomaltose also becomes predominant at shorter times if a mixture of maltose and glucose is used instead of maltose. To facilitate IMO production, we have designed a procedure by which yeast cells can be used directly as the catalytic agent. For this purpose, we expressed in S. cerevisiae gene constructs in which the aglA gene is fused to glycosylphosphatidylinositol anchor sequences, from the yeast SED1 gene, that determine the covalent binding of the hybrid protein to the cell membrane. The resulting hybrid enzymes were stably attached to the cell surface. The cells from cultures of recombinant yeast strains expressing aglA-SED1 constructions can be used to produce IMOs in successive batches.

14.
PLoS One ; 11(12): e0168035, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27930742

RESUMEN

In this work we report a detailed analysis of the topology and phylogenetics of family 2 glycoside hydrolases (GH2). We distinguish five topologies or domain architectures based on the presence and distribution of protein domains defined in Pfam and Interpro databases. All of them share a central TIM barrel (catalytic module) with two ß-sandwich domains (non-catalytic) at the N-terminal end, but differ in the occurrence and nature of additional non-catalytic modules at the C-terminal region. Phylogenetic analysis was based on the sequence of the Pfam Glyco_hydro_2_C catalytic module present in most GH2 proteins. Our results led us to propose a model in which evolutionary diversity of GH2 enzymes is driven by the addition of different non-catalytic domains at the C-terminal region. This model accounts for the divergence of ß-galactosidases from ß-glucuronidases, the diversification of ß-galactosidases with different transglycosylation specificities, and the emergence of bicistronic ß-galactosidases. This study also allows the identification of groups of functionally uncharacterized protein sequences with potential biotechnological interest.


Asunto(s)
Glicósido Hidrolasas/genética , Secuencia de Aminoácidos , Bacterias/enzimología , Bacterias/genética , Dominio Catalítico/genética , Glucuronidasa/química , Glucuronidasa/genética , Glicósido Hidrolasas/química , Glicosilación , Simulación del Acoplamiento Molecular , Filogenia , Especificidad por Sustrato , beta-Galactosidasa/química , beta-Galactosidasa/genética
15.
J Biol Chem ; 291(46): 24200-24214, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27679487

RESUMEN

Metagenomics has opened up a vast pool of genes for putative, yet uncharacterized, enzymes. It widens our knowledge on the enzyme diversity world and discloses new families for which a clear classification is still needed, as is exemplified by glycoside hydrolase family-3 (GH3) proteins. Herein, we describe a GH3 enzyme (GlyA1) from resident microbial communities in strained ruminal fluid. The enzyme is a ß-glucosidase/ß-xylosidase that also shows ß-galactosidase, ß-fucosidase, α-arabinofuranosidase, and α-arabinopyranosidase activities. Short cello- and xylo-oligosaccharides, sophorose and gentibiose, are among the preferred substrates, with the large polysaccharide lichenan also being hydrolyzed by GlyA1 The determination of the crystal structure of the enzyme in combination with deletion and site-directed mutagenesis allowed identification of its unusual domain composition and the active site architecture. Complexes of GlyA1 with glucose, galactose, and xylose allowed picturing the catalytic pocket and illustrated the molecular basis of the substrate specificity. A hydrophobic platform defined by residues Trp-711 and Trp-106, located in a highly mobile loop, appears able to allocate differently ß-linked bioses. GlyA1 includes an additional C-terminal domain previously unobserved in GH3 members, but crystallization of the full-length enzyme was unsuccessful. Therefore, small angle x-ray experiments have been performed to investigate the molecular flexibility and overall putative shape. This study provided evidence that GlyA1 defines a new subfamily of GH3 proteins with a novel permuted domain topology. Phylogenetic analysis indicates that this topology is associated with microbes inhabiting the digestive tracts of ruminants and other animals, feeding on chemically diverse plant polymeric materials.


Asunto(s)
Proteínas Bacterianas/química , Glicósido Hidrolasas/química , Metagenoma , Estómago de Rumiantes/microbiología , Animales , Proteínas Bacterianas/genética , Bovinos , Cristalografía por Rayos X , Glicósido Hidrolasas/genética , Dominios Proteicos
16.
J Agric Food Chem ; 64(14): 2917-24, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26998654

RESUMEN

Glycoside hydrolases, specifically ß-galactosidases, can be used to synthesize galacto-oligosaccharides (GOS) due to the transglycosylating (secondary) activity of these enzymes. Site-directed mutagenesis of a thermoresistant ß-galactosidase from Thermotoga maritima has been carried out to study the structural basis of transgalactosylation and to obtain enzymatic variants with better performance for GOS biosynthesis. Rational design of mutations was based on homologous sequence analysis and structural modeling. Analysis of mutant enzymes indicated that residue W959, or an alternative aromatic residue at this position, is critical for the synthesis of ß-3'-galactosyl-lactose, the major GOS obtained with the wild-type enzyme. Mutants W959A and W959C, but not W959F, showed an 80% reduced synthesis of this GOS. Other substitutions, N574S, N574A, and F571L, increased the synthesis of ß-3'-galactosyl-lactose about 40%. Double mutants F571L/N574S and F571L/N574A showed an increase of about 2-fold.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Thermotoga maritima/enzimología , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Galactosa/metabolismo , Glicosilación , Mutagénesis Sitio-Dirigida , Oligosacáridos/metabolismo , Thermotoga maritima/química , Thermotoga maritima/genética , beta-Galactosidasa/genética
18.
PLoS One ; 10(12): e0144289, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26642312

RESUMEN

Glucose oxidase is one of the most conspicuous commercial enzymes due to its many different applications in diverse industries such as food, chemical, energy and textile. Among these applications, the most remarkable is the manufacture of glucose biosensors and in particular sensor strips used to measure glucose levels in serum. The generation of ameliorated versions of glucose oxidase is therefore a significant biotechnological objective. We have used a strategy that combined random and rational approaches to isolate uncharacterized mutations of Aspergillus niger glucose oxidase with improved properties. As a result, we have identified two changes that increase significantly the enzyme's thermal stability. One (T554M) generates a sulfur-pi interaction and the other (Q90R/Y509E) introduces a new salt bridge near the interphase of the dimeric protein structure. An additional double substitution (Q124R/L569E) has no significant effect on stability but causes a twofold increase of the enzyme's specific activity. Our results disclose structural motifs of the protein which are critical for its stability. The combination of mutations in the Q90R/Y509E/T554M triple mutant yielded a version of A. niger glucose oxidase with higher stability than those previously described.


Asunto(s)
Sustitución de Aminoácidos , Aspergillus niger/enzimología , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Ingeniería de Proteínas/métodos , Aspergillus niger/genética , Estabilidad de Enzimas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosa Oxidasa/genética , Modelos Moleculares , Conformación Proteica
19.
Appl Microbiol Biotechnol ; 99(6): 2549-55, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25547837

RESUMEN

We describe a simple, efficient process for the production of 6-kestose, a trisaccharide with well-documented prebiotic properties. A key factor is the use of a yeast transformant expressing an engineered version of Saccharomyces invertase with enhanced transfructosylating activity. When the yeast transformant was grown with 30 % sucrose as the carbon source, 6-kestose accumulated up to ca. 100 g/L in the culture medium. The 6-kestose yield was significantly enhanced (up to 200 g/L) using a two-stage process carried out in the same flask. In the first stage, the culture was grown in 30 % sucrose at physiological temperature (30 °C) to allow overexpression of the invertase. In the second stage, sucrose was added to the culture at high concentration (60 %) and the temperature shifted to 50 °C. In both cases, 6-kestose was synthesized with high specificity, representing more than 95 % of total FOS.


Asunto(s)
Oligosacáridos/biosíntesis , Saccharomyces cerevisiae/metabolismo , beta-Fructofuranosidasa/metabolismo , Medios de Cultivo , Microbiología Industrial , Ingeniería de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Sacarosa/química , Transformación Genética , Trisacáridos/biosíntesis , beta-Fructofuranosidasa/genética
20.
J Basic Microbiol ; 54(5): 340-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23686704

RESUMEN

Ustilago maydis is a pathogenic fungus that produces the corn smut. It is a biotrophic parasite that depends on living plant tissues for its proliferation and development. Polygalacturonases are secreted by pathogens to solubilize the plant cell-wall and are required for pathogen virulence. In this paper, we report the isolation of a U. maydis polygalacturonase gene (Pgu1) and the functional and structural characterization of the encoded enzyme. The U. maydis Pgu1 gene is expressed when the fungus is grown in liquid culture media containing different carbon sources. In plant tissue, the expression increased as a function of incubation time. Pgu1 gene expression was detected during plant infection around 10 days post-infection with U. maydis FB-D12 strain in combination with teliospore formation. Synthesis and secretion of active recombinant PGU1 were achieved using Pichia pastoris, the purified enzyme had a optimum temperature of 34 °C, optimum pH of 4.5, a Km of 57.84 g/L for polygalacturonic acid, and a Vmax of 28.9 µg/min mg. Structural models of PGU1 based on homologous enzymes yielded a typical right-handed ß-helix fold of pectinolytic enzymes classified in the glycosyl hydrolases family 28, and the U. maydis PGU1 is related with endo rather than exo polygalacturonases.


Asunto(s)
Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Ustilago/enzimología , Ustilago/genética , Carbono/metabolismo , Clonación Molecular , Medios de Cultivo/química , ADN de Hongos/química , ADN de Hongos/genética , Estabilidad de Enzimas , Perfilación de la Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Pichia/enzimología , Pichia/genética , Enfermedades de las Plantas/microbiología , Poligalacturonasa/química , Poligalacturonasa/aislamiento & purificación , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Temperatura , Ustilago/crecimiento & desarrollo , Ustilago/metabolismo , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...