Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 14(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38929455

RESUMEN

Bovine in vitro oocyte maturation (IVM) is an easy way to obtain oocytes for subsequent assisted reproductive techniques but is inefficient compared to in vivo maturation. Supplementation of three cytokines, fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1), or FLI, has increased oocyte maturation and embryo development in multiple species, but studies have not explored the oocyte differences caused by FLI IVM supplementation. This study aimed to assess important nuclear and cytoplasmic maturation events in high-quality oocytes. FLI-supplemented oocytes had a decreased GV (3.0% vs. 13.7%, p < 0.01) and increased telophase I incidence (34.6% vs. 17.6%, p < 0.05) after IVM, increased normal meiotic spindles (68.8% vs. 50.0%, p < 0.001), and an increased nuclear maturation rate (75.1% vs. 66.8%, p < 0.001). Moreover, in metaphase II oocytes, the percentage of FLI-treated oocytes with a diffuse mitochondrial distribution was higher (87.7% vs. 77.5%, p < 0.05) and with a cortical mitochondrial distribution was lower (11.6% vs. 17.4%, p < 0.05). Additionally, FLI-supplemented oocytes had more pattern I cortical granules (21.3% vs. 14.4%, p < 0.05). These data suggest that FLI supplementation in bovine in vitro maturation medium coordinates nuclear and cytoplasmic maturation to produce higher-quality oocytes.

2.
Reprod Fertil Dev ; 35(11): 575-588, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37308165

RESUMEN

CONTEXT: In vitro maturation is an important process in the production of embryos. It has been shown that three cytokines, fibroblast growth factor 2, leukemia inhibitory factor and insulin-like growth factor 1 (FLI), increased efficiency of in vitro maturation, somatic cell nuclear transfer (SCNT) blastocyst production, and in vivo development of genetically engineered piglets. AIMS: Assess effects of FLI on oocyte maturation, quality of oocytes, and embryo development in bovine in vitro fertilisation (IVF) and SCNT. KEY RESULTS: Cytokine supplementation resulted in significant increases in maturation rates and decreased levels of reactive oxygen species. Oocytes matured in FLI had increased blastocyst rates when used in IVF (35.6%vs 27.3%, P <0.05) and SCNT (40.6%vs 25.7%, P <0.05). SCNT blastocysts contained significantly more inner cell mass and trophectodermal cells when compared to the control group. Importantly, SCNT embryos derived from oocytes matured in FLI medium resulted in a four-fold increase in full-term development compared to control medium (23.3%vs 5.3%, P <0.05). Relative mRNA expression analysis of 37 genes associated with embryonic and fetal development revealed one gene had differential transcript abundance in metaphase II oocytes, nine genes at the 8-cell stage, 10 genes at the blastocyst stage in IVF embryos and four genes at the blastocyst stage in SCNT embryos. CONCLUSIONS: Cytokine supplementation increased efficiency of in vitro production of IVF and SCNT embryos and in vivo development of SCNT embryos to term. IMPLICATIONS: Cytokine supplementation is beneficial to embryo culture systems, which may shed light on requirements of early embryo development.


Asunto(s)
Citocinas , Técnicas de Transferencia Nuclear , Animales , Bovinos , Porcinos , Citocinas/genética , Citocinas/metabolismo , Técnicas de Transferencia Nuclear/veterinaria , Desarrollo Embrionario , Fertilización In Vitro/veterinaria , Blastocisto/metabolismo , Oocitos/metabolismo , Suplementos Dietéticos , Clonación de Organismos
3.
Funct Integr Genomics ; 23(2): 135, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37085733

RESUMEN

The precise molecular events initiating human lung disease are often poorly characterized. Investigating prenatal events that may underlie lung disease in later life is challenging in man, but insights from the well-characterized sheep model of lung development are valuable. Here, we determine the transcriptomic signature of lung development in wild-type sheep (WT) and use a sheep model of cystic fibrosis (CF) to characterize disease associated changes in gene expression through the pseudoglandular, canalicular, saccular, and alveolar stages of lung growth and differentiation. Using gene ontology process enrichment analysis of differentially expressed genes at each developmental time point, we define changes in biological processes (BP) in proximal and distal lung from WT or CF animals. We also compare divergent BP in WT and CF animals at each time point. Next, we establish the developmental profile of key genes encoding components of ion transport and innate immunity that are pivotal in CF lung disease and validate transcriptomic data by RT-qPCR. Consistent with the known pro-inflammatory phenotype of the CF lung after birth, we observe upregulation of inflammatory response processes in the CF sheep distal lung during the saccular stage of prenatal development. These data suggest early commencement of therapeutic regimens may be beneficial.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Pulmón , Animales , Fibrosis Quística/genética , Fibrosis Quística/patología , Fibrosis Quística/veterinaria , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Perfilación de la Expresión Génica , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Ovinos/genética , Transcriptoma , Inflamación/genética , Inflamación/patología
4.
J Thorac Cardiovasc Surg ; 166(4): e142-e152, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36914518

RESUMEN

BACKGROUND: Heart valve implantation in juvenile sheep to demonstrate biocompatibility and physiologic performance is the accepted model for regulatory approval of new biological heart valves (BHVs). However, this standard model does not detect the immunologic incompatibility between the major xenogeneic antigen, galactose-α-1,3-galactose (Gal), which is present in all current commercial BHVs, and patients who universally produce anti-Gal antibody. This clinical discordance leads to induced anti-Gal antibody in BHV recipients, promoting tissue calcification and premature structural valve degeneration, especially in young patients. The objective of the present study was to develop genetically engineered sheep that, like humans, produce anti-Gal antibody and mirror current clinical immune discordance. METHODS: Guide RNA for CRISPR Cas9 nuclease was transfected into sheep fetal fibroblasts, creating a biallelic frame shift mutation in exon 4 of the ovine α-galactosyltransferase gene (GGTA1). Somatic cell nuclear transfer was performed, and cloned embryos were transferred to synchronized recipients. Cloned offspring were analyzed for expression of Gal antigen and spontaneous production of anti-Gal antibody. RESULTS: Two of 4 surviving sheep survived long-term. One of the 2 was devoid of the Gal antigen (GalKO) and expressed cytotoxic anti-Gal antibody by age 2 to 3 months, which increased to clinically relevant levels by 6 months. CONCLUSIONS: GalKO sheep represent a new, clinically relevant advanced standard for preclinical testing of BHVs (surgical or transcatheter) by accounting for the first time for human immune responses to residual Gal antigen that persists after current BHV tissue processing. This will identify the consequences of immune disparity preclinically and avoid unexpected past clinical sequelae.


Asunto(s)
Bioprótesis , Calcinosis , Prótesis Valvulares Cardíacas , Animales , Humanos , Ovinos , Lactante , Galactosa , Válvulas Cardíacas , Ingeniería Genética
5.
FASEB Bioadv ; 5(1): 13-26, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36643895

RESUMEN

Highly effective modulator therapies for cystic fibrosis (CF) make it a treatable condition for many people. However, although CF respiratory illness occurs after birth, other organ systems particularly in the digestive tract are damaged before birth. We use an ovine model of CF to investigate the in utero origins of CF disease since the sheep closely mirrors critical aspects of human development. Wildtype (WT) and CFTR -/- sheep tissues were collected at 50, 65, 80, 100, and 120 days of gestation and term (147 days) and used for histological, electrophysiological, and molecular analysis. Histological abnormalities are evident in CFTR-/- -/-  animals by 80 days of gestation, equivalent to 21 weeks in humans. Acinar and ductal dilation, mucus obstruction, and fibrosis are observed in the pancreas; biliary fibrosis, cholestasis, and gallbladder hypoplasia in the liver; and intestinal meconium obstruction, as seen at birth in all large animal models of CF. Concurrently, cystic fibrosis transmembrane conductance regulator (CFTR)-dependent short circuit current is present in WT tracheal epithelium by 80 days gestation and is absent from CFTR -/- tissues. Transcriptomic profiles of tracheal tissues confirm the early expression of CFTR and suggest that its loss does not globally impair tracheal differentiation.

6.
Front Genet ; 13: 986316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246651

RESUMEN

Type I interferons (IFNs) initiate immune responses to viral infections. Their effects are mediated by the type I IFN receptor, IFNAR, comprised of two subunits: IFNAR1 and IFNAR2. One or both chains of the sheep IFNAR were disrupted in fetal fibroblast lines using CRISPR/Cas9 and 12 lambs were produced by somatic cell nuclear transfer (SCNT). Quantitative reverse transcription-polymerase chain reaction for IFN-stimulated gene expression showed that IFNAR deficient sheep fail to respond to IFN-alpha. Furthermore, fibroblast cells from an IFNAR2 -/- fetus supported significantly higher levels of Zika virus (ZIKV) replication than wild-type fetal fibroblast cells. Although many lambs have died from SCNT related problems or infections, one fertile IFNAR2 -/- ram lived to over 4 years of age, remained healthy, and produced more than 80 offspring. Interestingly, ZIKV infection studies failed to demonstrate a high level of susceptibility. Presumably, these sheep compensated for a lack of type I IFN signaling using the type II, IFN-gamma and type III, IFN-lambda pathways. These sheep constitute a unique model for studying the pathogenesis of viral infection. Historical data supports the concept that ruminants utilize a novel type I IFN, IFN-tau, for pregnancy recognition. Consequently, IFNAR deficient ewes are likely to be infertile, making IFNAR knockout sheep a valuable model for studying pregnancy recognition. A breeding herd of 32 IFNAR2 +/- ewes, which are fertile, has been developed for production of IFNAR2 -/- sheep for both infection and reproduction studies.

7.
FASEB Bioadv ; 3(10): 841-854, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34632318

RESUMEN

Cystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.6% of all mutations, respectively. The F508del causes deletion of the phenylalanine residue at position 508 and is associated with impaired CFTR protein folding. The G542X is a nonsense mutation that introduces a stop codon into the mRNA, thus preventing normal CFTR protein synthesis. Here, we describe the generation of CFTRF508del / F508del and CFTRG542X / G542X lambs using CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). First, we introduced either F508del or G542X mutations into sheep fetal fibroblasts that were subsequently used as nuclear donors for SCNT. The newborn CF lambs develop pathology similar to CFTR -/- sheep and CF patients. Moreover, tracheal epithelial cells from the CFTRF508del / F508del lambs responded to a human CFTR (hCFTR) potentiator and correctors, and those from CFTRG542X / G542X lambs showed modest restoration of CFTR function following inhibition of nonsense-mediated decay (NMD) and aminoglycoside antibiotic treatments. Thus, the phenotype and electrophysiology of these novel models represent an important advance for testing new CF therapeutics and gene therapy to improve the health of patients with this life-limiting disorder.

8.
Biol Reprod ; 105(6): 1401-1415, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34514499

RESUMEN

Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET. For two miRNAs previously identified as differentially expressed in scNT morulae, miR-34a and miR-345, negative correlations with some predicted mRNA targets were apparent, though not widespread among the majority of predicted targets. Moreover, although large-scale aberrations in expression of mRNAs were evident during the MET in cattle scNT embryos, these changes were not consistently correlated with aberrations in miRNA expression at the same developmental stage, suggesting that other mechanisms controlling gene expression may be involved.


Asunto(s)
Bovinos/embriología , Embrión de Mamíferos/metabolismo , Fertilización In Vitro/veterinaria , Técnicas de Transferencia Nuclear/veterinaria , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Animales , Clonación de Organismos/veterinaria , Transcriptoma
9.
Biol Reprod ; 105(4): 918-933, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34086842

RESUMEN

The efficiency of somatic cell nuclear transfer (scNT) for production of viable offspring is relatively low as compared to in vitro fertilization (IVF), presumably due to deficiencies in epigenetic reprogramming of the donor cell genome. Such defects may also involve the population of small non-coding RNAs (sncRNAs), which are important during early embryonic development. The objective of this study was to examine dynamic changes in relative abundance of sncRNAs during the maternal-to-embryonic transition (MET) in bovine embryos produced by scNT as compared to IVF by using RNA sequencing. When comparing populations of miRNA in scNT versus IVF embryos, only miR-2340, miR-345, and miR34a were differentially expressed in morulae, though many more miRNAs were differentially expressed when comparing across developmental stages. Also of interest, distinct populations of piwi-interacting like RNAs (pilRNAs) were identified in bovine embryos prior to and during embryonic genome activation (EGA) as compared bovine embryos post-EGA and differentiated cells. Overall, sncRNA sequencing analysis of preimplantation embryos revealed largely similar profiles of sncRNAs for IVF and scNT embryos at the 2-cell, 8-cell, morula, and blastocyst stages of development. However, these sncRNA profiles, including miRNA, piRNA, and tRNA fragments, were notably distinct prior to and after completion of the MET.


Asunto(s)
Bovinos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , ARN Pequeño no Traducido/metabolismo , Animales , Técnicas de Transferencia Nuclear
10.
Reproduction ; 162(1): F11-F22, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34042607

RESUMEN

Genetic engineering (GE) of livestock initially has been accomplished primarily using pronuclear microinjection into zygotes (1985-1996). The applications of the technology were limited due to low integration efficiency, aberrant transgene expression resulting from random integration and the presence of genetic mosaicism in transgenic founder animals. Despite enormous efforts to established embryonic stem cells (ESCs) for domestic species, the ESC GE technology does not exist for livestock. Development of somatic cell nuclear transfer (SCNT) has bypassed the need in livestock ESCs and revolutionized the field of livestock transgenesis by offering the first cell-based platform for precise genetic manipulation in farm animals. For nearly two decades since the birth of Dolly (1996-2013), SCNT was the only method used for the generation of knockout and knockin livestock. Arrival of CRISPRS/Cas9 system, a new generation of gene-editing technology, gave us an ability to introduce precise genome modifications easily and efficiently. This technological advancement accelerated production of GE livestock by SCNT and reinstated zygote micromanipulation as an important GE approach. The primary advantage of the SCNT technology is the ability to confirm in vitro that the desired genetic modification is present in the somatic cells prior to animal production. The edited cells could also be tested for potential off-target mutations. Additionally, this method eliminates the risk of genetic mosaicism frequently observed following zygote micromanipulation. Despite its low efficiency, SCNT is a well-established procedure in numerous laboratories around the world and will continue to play an important role in the GE livestock field.


Asunto(s)
Animales Modificados Genéticamente/genética , Núcleo Celular/genética , Clonación de Organismos/veterinaria , Embrión de Mamíferos/citología , Ingeniería Genética , Ganado/genética , Técnicas de Transferencia Nuclear/veterinaria , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Aniversarios y Eventos Especiales , Clonación de Organismos/métodos , Clonación de Organismos/tendencias , Ganado/crecimiento & desarrollo
11.
Proc Natl Acad Sci U S A ; 117(39): 24195-24204, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32929012

RESUMEN

Spermatogonial stem cell transplantation (SSCT) is an experimental technique for transfer of germline between donor and recipient males that could be used as a tool for biomedical research, preservation of endangered species, and dissemination of desirable genetics in food animal populations. To fully realize these potentials, recipient males must be devoid of endogenous germline but possess normal testicular architecture and somatic cell function capable of supporting allogeneic donor stem cell engraftment and regeneration of spermatogenesis. Here we show that male mice, pigs, goats, and cattle harboring knockout alleles of the NANOS2 gene generated by CRISPR-Cas9 editing have testes that are germline ablated but otherwise structurally normal. In adult pigs and goats, SSCT with allogeneic donor stem cells led to sustained donor-derived spermatogenesis. With prepubertal mice, allogeneic SSCT resulted in attainment of natural fertility. Collectively, these advancements represent a major step toward realizing the enormous potential of surrogate sires as a tool for dissemination and regeneration of germplasm in all mammalian species.


Asunto(s)
Células Madre Germinales Adultas/trasplante , Proteínas de Unión al ARN/fisiología , Espermatogénesis , Animales , Bovinos , Femenino , Cabras , Masculino , Ratones , Ratones Noqueados , Porcinos , Testículo/anatomía & histología , Testículo/fisiología , Trasplante Homólogo
12.
Front Genet ; 11: 614688, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33603767

RESUMEN

Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.

13.
Circ Arrhythm Electrophysiol ; 12(11): e007499, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31707807

RESUMEN

BACKGROUND: There is increasing evidence that endurance exercise is associated with increased risk of atrial fibrillation (AF). However, it is unknown if the relationship between endurance exercise and AF is dependent on an atrial myopathy. METHODS: Six cardiac-specific TGF (transforming growth factor)-ß1 transgenic and 6 wild-type (WT) goats were utilized for these studies. Pacemakers were implanted in all animals for continuous arrhythmia monitoring and AF inducibility. AF inducibility was evaluated using 5 separate 10 s bursts of atrial pacing (160-200 ms). Three months of progressive endurance exercise (up to 90 minutes at 4.5 mph) was performed. Quantitative assessment of circulating microRNAs and inflammatory biomarkers was performed. RESULTS: Sustained AF (≥30 s) was induced with 10 s of atrial pacing in 4 out of 6 transgenic goats compared with 0 out of 6 WT controls at baseline (P<0.05). No spontaneous AF was observed at baseline. Interestingly, between 2 and 3 months of exercise 3 out of 6 transgenic animals developed self-terminating spontaneous AF compared with 0 out of 6 WT animals (P<0.05). There was an increase in AF inducibility in both transgenic and WT animals during the first 2 months of exercise with partial normalization at 3 months (transgenic 67%; 100%; 83% versus WT 0%; 67%; 17%). These changes in AF susceptibility were associated with a decrease in circulating microRNA-21 and microRNA-29 during the first 2 months of exercise with partial normalization at 3 months in both transgenic and WT animals. Finally, MMP9 (matrix metallopeptidase 9) was increased during the second and third months of exercise training. CONCLUSIONS: This study demonstrates a novel transgenic goat model of cardiac fibrosis (TGF-ß1 overexpression) to demonstrate that endurance exercise in the setting of an underlying atrial myopathy increases the incidence of spontaneous AF. Furthermore, endurance exercise seems to increase inducible AF secondary to altered expression of key profibrotic biomarkers that is independent of the presence of an atrial myopathy.


Asunto(s)
Fibrilación Atrial/genética , Regulación de la Expresión Génica , Atrios Cardíacos/fisiopatología , Enfermedades Musculares/etiología , Condicionamiento Físico Animal/métodos , Factor de Crecimiento Transformador beta1/genética , Animales , Animales Modificados Genéticamente , Fibrilación Atrial/complicaciones , Fibrilación Atrial/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Cabras , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/metabolismo , Inmunohistoquímica , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , ARN/genética , Factor de Crecimiento Transformador beta1/biosíntesis
14.
J Anim Sci ; 97(9): 3786-3794, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31353395

RESUMEN

Microchimerism is defined as the presence of a small population of cells or DNA in 1 organism originated from a genetically different organism. It is well established that this phenomenon occurs in humans and mice as cells are exchanged between mother and fetus during gestation. Currently, no information is available about the presence of maternal microchimerism in goats, and the only published study is limited to an evaluation of fetal and fetal-fetal microchimerism in blood samples following natural breeding. In order to determine whether bidirectional fetal-maternal cell or DNA trafficking occurs in goats, we assessed: 1) fetal microchimerism in surrogates that gave birth to somatic cell nuclear transfer (SCNT)-derived transgenic offspring (n = 4), 2) maternal microchimerism following natural breeding of SCNT-derived transgenic does with a nontransgenic buck (n = 4), and 3) fetal-fetal microchimerism in nontransgenic twins of transgenic offspring (n = 3). Neomycin-resistance gene (NEO) gene was selected as the marker to detect the presence of the αMHC-TGF-ß1-Neo transgene in kidney, liver, lung, lymph node, and spleen. We found no detectable maternal or fetal-fetal microchimerism in the investigated tissues of nontransgenic offspring. However, fetal microchimerism was detected in lymph node tissue of one of the surrogate dams carrying a SCNT pregnancy. These results indicate occurrence of cell trafficking from fetus to mother during SCNT pregnancies. The findings of this study have direct implications on the use and disposal of nontransgenic surrogates and nontransgenic offspring.


Asunto(s)
Quimerismo , Cabras/genética , Animales , Animales Modificados Genéticamente , ADN/genética , Femenino , Feto , Cabras/fisiología , Técnicas de Transferencia Nuclear/veterinaria , Parto , Embarazo
15.
Funct Imaging Model Heart ; 11504: 168-176, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31245795

RESUMEN

Clinical approaches for quantification of atrial fibrosis are currently based on digital image processing of magnetic resonance images. Here, we introduce and evaluate a comprehensive framework based on convolutional neural networks for quantifying atrial fibrosis from images acquired with catheterized fiber-optics confocal microscopy (FCM). FCM images in three regions of the atria were acquired in the beating heart in situ in an established transgenic animal model of atrial fibrosis. Fibrosis in the imaged regions was histologically assessed in excised tissue. FCM images and their corresponding histologically-assessed fibrosis levels were used for training of a convolutional neural network. We evaluated the utility and performance of the convolutional neural networks by varying parameters including image dimension and training batch size. In general, we observed that the root-mean square error (RMSE) of the predicted fibrosis was decreased with increasing image dimension. We achieved a RMSE of 2.6% and a Pearson correlation coefficient of 0.953 when applying a network trained on images with a dimension of 400 × 400 pixels and a batch size of 128 to our test image set. The findings indicate feasibility of our approach for fibrosis quantification from images acquired with catheterized FCM using convolutional neural networks. We suggest that the developed framework will facilitate translation of catheterized FCM into a clinical approach that complements current approaches for quantification of atrial fibrosis.

16.
Sci Rep ; 9(1): 366, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30675003

RESUMEN

To address the unmet needs for human polyclonal antibodies both as therapeutics and diagnostic reagents, building upon our previously established transchromosomic (Tc) cattle platform, we report herein the development of a Tc goat system expressing human polyclonal antibodies in their sera. In the Tc goat system, a human artificial chromosome (HAC) comprising the entire human immunoglobulin (Ig) gene repertoire in the germline configuration was introduced into the genetic makeup of the domestic goat. We achieved this by transferring the HAC into goat fetal fibroblast cells followed by somatic cell nuclear transfer for Tc goat production. Gene and protein expression analyses in the peripheral blood mononuclear cells (PBMC) and the sera, respectively, of Tc caprine demonstrated the successful expression of human Ig genes and antibodies. Furthermore, immunization of Tc caprine with inactivated influenza A (H7N9) viruses followed by H7N9 Hemagglutinin 1 (HA1) boosting elicited human antibodies with high neutralizing activities against H7N9 viruses in vitro. As a small ungulate, Tc caprine offers the advantages of low cost and quick establishment of herds, therefore complementing the Tc cattle platform in responses to a range of medical needs and diagnostic applications where small volumes of human antibody products are needed.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Subtipo H7N9 del Virus de la Influenza A/inmunología , Animales , Animales Modificados Genéticamente , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Cromosomas Artificiales Humanos , Ensayo de Inmunoadsorción Enzimática , Ingeniería Genética , Cabras , Humanos , Inmunización , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Pruebas de Neutralización
17.
Methods Mol Biol ; 1874: 373-390, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30353526

RESUMEN

The combination of CRISPR/Cas9 and SCNT techniques greatly facilitates the production of gene-edited livestock. Here, we describe the detailed procedure to create gene knockout goats using this strategy starting from the construction of CRISPR/Cas9 targeting vectors to the transfer of cloned embryos into recipient females. In this procedure, the transfection conditions for goat fibroblasts were optimized due to their high sensitivity to electrotransfection, which enabled the isolation of single-cell colonies carrying simultaneous disruption of multiple genes for SCNT with a single co-transfection of pooled CRISPR/Cas9 targeting vectors.


Asunto(s)
Clonación de Organismos/métodos , Fibroblastos/citología , Técnicas de Inactivación de Genes/métodos , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Células Cultivadas , Técnicas de Cultivo de Embriones , Femenino , Fibroblastos/metabolismo , Cabras , Técnicas de Transferencia Nuclear , ARN Guía de Kinetoplastida/genética
18.
JCI Insight ; 3(19)2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30282831

RESUMEN

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The major cause of limited life span in CF patients is progressive lung disease. CF models have been generated in 4 species (mice, rats, ferrets, and pigs) to enhance our understanding of the CF pathogenesis. Sheep may be a particularly relevant animal to model CF in humans due to the similarities in lung anatomy and development in the two species. Here, we describe the generation of a sheep model for CF using CRISPR/Cas9 genome editing and somatic cell nuclear transfer (SCNT) techniques. We generated cells with CFTR gene disruption and used them for production of CFTR-/- and CFTR+/- lambs. The newborn CFTR-/- sheep developed severe disease consistent with CF pathology in humans. Of particular relevance were pancreatic fibrosis, intestinal obstruction, and absence of the vas deferens. Also, substantial liver and gallbladder disease may reflect CF liver disease that is evident in humans. The phenotype of CFTR-/- sheep suggests this large animal model will be a useful resource to advance the development of new CF therapeutics. Moreover, the generation of specific human CF disease-associated mutations in sheep may advance personalized medicine for this common genetic disorder.


Asunto(s)
Sistemas CRISPR-Cas/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Modelos Animales de Enfermedad , Ovinos , Animales , Animales Modificados Genéticamente , Fibrosis Quística/patología , Femenino , Fibrosis , Vesícula Biliar/patología , Técnicas de Inactivación de Genes , Humanos , Hígado/patología , Pulmón/patología , Masculino , Técnicas de Transferencia Nuclear , Páncreas/patología , Fenotipo , Especificidad de la Especie
19.
Viruses ; 10(8)2018 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-30103523

RESUMEN

Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.


Asunto(s)
Variación Genética , Interacciones Huésped-Patógeno/genética , Infección por el Virus Zika/genética , Virus Zika/genética , Animales , Línea Celular , Chlorocebus aethiops , Clonación Molecular , Femenino , Expresión Génica , Genómica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Genética Inversa , Células Vero , Carga Viral , Internalización del Virus , Replicación Viral , Virus Zika/fisiología , Infección por el Virus Zika/virología
20.
Reprod Fertil Dev ; 30(11): 1443-1453, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29769162

RESUMEN

Serial cloning by somatic cell nuclear transfer (SCNT) is a critical tool for the expansion of precious transgenic lines or resetting the lifespan of primary transgenic cells for multiple genetic modifications. We successfully produced second-generation cloned goats using donor neonatal fibroblasts from first-generation clones. However, our attempts to produce any third-generation clones failed. SCNT efficiency decreased progressively with the clonal generations. The rate of pregnancy loss was significantly greater in recloning groups (P<0.05). While no pregnancy loss was observed during the first round of SCNT, 14 out of 21 pregnancies aborted in the second round of SCNT and all pregnancies aborted in the third round of SCNT. In this retrospective study, we also investigated the expression of 21 developmentally important genes in muscle tissue of cloned (G1) and recloned (G2) offspring. The expression of most of these genes in live clones was found to be largely comparable to naturally reproduced control goats, but fibroblast growth factor 10 (FGF10), methyl CpG binding protein 2 (MECP2) and growth factor receptor bound protein 10 (GRB10) were differentially expressed (P<0.05) in G2 goats compared with G1 and controls. To study the effects of serial cloning on DNA methylation, the methylation pattern of differentially methylated regions in imprinted genes H19 and insulin like growth factor 2 receptor (IGF2R) were also analysed. Aberrant H19 DNA methylation patterns were detected in G1 and G2 clones.


Asunto(s)
Aborto Veterinario , Clonación de Organismos/veterinaria , Metilación de ADN , Técnicas de Transferencia Nuclear/veterinaria , Animales , Animales Modificados Genéticamente , Femenino , Factor 10 de Crecimiento de Fibroblastos/genética , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Impresión Genómica , Cabras , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Músculo Esquelético/metabolismo , Embarazo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...