Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6523, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112500

RESUMEN

High-temperature superconducting wires have many large-scale, niche applications such as commercial nuclear fusion as well as numerous other large-scale applications in the electric power industry and in the defense, medical and transportation industries. However, the price/performance metric of these coated conductor wires is not yet favorable to enable and realize most large-scale applications. Here we report on probing the limits of Jc (H, T) possible via defect engineering in heteroepitaxially deposited high-temperature superconducting thin-films on coated conductor substrates used for long-length wire fabrication. We report record values of Jc (H, T) and pinning force, Fp (H, T) in (RE)BCO films with self-assembled BaZrO3 nanocolumns deposited on a coated conductor substrate. A Jc of ~190 MA/cm2 at 4.2 K, self-field and ~90 MA/cm2, at 4.2 K, 7 T was measured. At 20 K, Jc of over 150 MA/cm2 at self-field and over 60 MA/cm2 at 7 T was observed. A very high pinning force, Fp, of ~6.4 TN/m3 and ~4.2 TN/m3 were observed at 7 T, 4.2 K and 7 T, 20 K respectively. We report on the highest values of Jc and Fp obtained to date for all fields and operating temperatures from 4.2 K to 77 K. These results demonstrate that significant performance enhancements and hence far more favorable price/performance metrics are possible in commercial high-temperature superconducting wires.

2.
Sci Rep ; 12(1): 19132, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352252

RESUMEN

We have investigated the pinning potential of high-quality single crystals of superconducting material CaKFe4As4 having high critical current density and very high upper critical field using both magnetization relaxation measurements and frequency-dependent AC susceptibility. Preliminary studies of the superconducting transition and of the isothermal magnetization loops confirmed the high quality of the samples, while temperature dependence of the AC susceptibility in high magnetic fields show absolutely no dependence on the cooling conditions, hence, no magnetic history. From magnetization relaxation measurements were extracted the values of the normalized pinning potential U*, which reveals a clear crossover between elastic creep and plastic creep. The extremely high values of U*, up to 1200 K around the temperature of 20 K lead to a nearly zero value of the probability of thermally-activated flux jumps at temperatures of interest for high-field applications. The values of the creep exponents in the two creep regimes resulted from the analysis of the magnetization relaxation data are in complete agreement with theoretical models. Pinning potentials were also estimated, near the critical temperature, from AC susceptibility measurements, their values being close to those resulted (at the same temperature and DC field) from the magnetization relaxation data.

3.
Sci Rep ; 11(1): 7247, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790359

RESUMEN

The correlation in type-II superconductors between the creep rate S and the Second Magnetization Peak (SMP) phenomenon which produces an increase in Jc, as a function of the field (H), has been investigated at different temperatures by starting from the minimum in S(H) and the onset of the SMP phenomenon detected on a FeSe0.5Te0.5 sample. Then the analysis has been extended by considering the entire S(H) curves and comparing our results with those of many other superconducting materials reported in literature. In this way, we find evidence that the flux dynamic mechanisms behind the appearance of the SMP phenomenon in Jc(H) are activated at fields well below those where the critical current starts effectively to increase. Moreover, the found universal relation between the minimum in the S(H) and the SMP phenomenon in Jc(H) shows that both can be attributed to a sequential crossover between a less effective pinning (losing its effectiveness at low fields) to a more effective pinning (still acting at high fields), regardless of the type-II superconductor taken into consideration.

4.
Nanotechnology ; 30(25): 254001, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-30831561

RESUMEN

The measurements of DC magnetization M as a function of magnetic field (H) and time (t) have been performed in order to study the superconducting and pinning properties of a Fe(Se, Te) iron based superconductor fabricated by means of the Bridgman technique. By performing the superconducting hysteresis loops M(H) at different temperatures in the case of perpendicular and parallel field, the critical current density Jc (H) has been extracted in the framework of the Bean critical state model for both configurations. The Jc (H) curves have shown the presence of the second magnetization peak effect that causes an anomalous increase in the field dependence of the critical current density. In order to obtain the Jc anisotropy of the sample, we have performed the ratio between perpendicular and parallel critical current density values [Formula: see text] and compared its values with the literature ones. The information regarding the pinning energy U have been extracted by means of the relaxation of the irreversible magnetization M(t) in the case H∣∣c. In particular, performing relaxation measurements at different temperatures and magnetic fields, the temperature dependence of the pinning energy U(T) at different magnetic fields has been obtained showing an anomalous temperature scaling of the curves. The presence of a maximum in the U(T) curves suggests a pinning crossover at a given field and temperature H cr(T). The H cr(T) values have been fitted with the equation H cr(T) = H cr(0) (1 - T/T*) n whose results confirm the correlation between the elastic/plastic crossover and the end of the peak effect phenomenon.

5.
J Phys Condens Matter ; 29(42): 425701, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28742063

RESUMEN

A model has been developed to determine the effective ac magnetic response of magnetic systems, taking into account the demagnetization effects arising from the sample geometry which determine the out-of-phase components of the applied fundamental frequency and higher harmonic components. Indeed, demagnetization fields and their intermodulation can significantly affect the ac magnetic response. This approach provides a system of self-consistent linear equations relating the magnetic response to the external magnetic field by means of nonlinear magnetic susceptibility. The model is extended to the magnetic response of granular systems in terms of the contributions of the individual grains and of the whole sample in the presence of demagnetization effects of the whole sample and of the grains on a macroscopic scale. In particular, our model is applied to a granular superconducting system. The comparison between the performed numerical simulations and the experimental data shows that the demagnetization fields of the single grains and of the whole sample, and their intermodulation, are relevant if magnetic measurements are used to extract detailed information about the analyzed material.

6.
J Phys Condens Matter ; 21(25): 254205, 2009 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21828429

RESUMEN

The fabrication and characterization of superconducting and ferromagnetic heterostructures is an open field due to the fundamental interest in the physics of the coexistence of these two competing orders and their possible applications in the spintronics industry. In this paper we present structural, electrical and magnetic characterization for the single La(0.7)Ca(0.3)MnO(3) (LCMO) thin layer, La(0.7)Ca(0.3)MnO(3)/YBa(2)Cu(3)O(7-x) (LCMO/YBCO) bilayers and the LCMO/YBCO/LCMO trilayers. In particular, we show a detailed magnetic characterization of the LCMO thin films by means of low temperature magnetic force microscopy. We discuss the different dynamics of the magnetic domains observed, depending on the substrate induced strain and on the film thickness.

7.
J Phys Condens Matter ; 20(38): 385211, 2008 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-21693829

RESUMEN

The evidence of the vortex glass phase has been obtained by analysing the nonlinear magnetic response of type-II superconductors. The method introduced here is based on a combined frequency dependence analysis of the real and imaginary part of the 1st and 3rd harmonics of the AC magnetic susceptibility. The analysis has been performed by taking into account both the components and the Cole-Cole plots (i.e. the imaginary part as a function of the real part). Numerical simulations have been used to identify the fingerprints of the magnetic behaviour in the vortex glass phase. These characteristics allowed the vortex glass phase to be distinguished from the other disordered phases, even those showing similar electrical properties. Finally, this method has been successfully applied to detecting the vortex glass phase in an YBCO bulk melt-textured sample.

8.
Nature ; 411(6837): 561-3, 2001 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-11385564

RESUMEN

Magnesium diboride, MgB2, has a relatively high superconducting transition temperature, placing it between the families of low- and high-temperature (copper oxide based) superconductors. Supercurrent flow in MgB2 is unhindered by grain boundaries, making it potentially attractive for technological applications in the temperature range 20-30 K. But in the bulk material, the critical current density (Jc) drops rapidly with increasing magnetic field strength. The magnitude and field dependence of the critical current are related to the presence of structural defects that can 'pin' the quantized magnetic vortices that permeate the material, and a lack of natural defects in MgB2 may be responsible for the rapid decline of Jc with increasing field strength. Here we show that modest levels of atomic disorder induced by proton irradiation enhance the pinning of vortices, thereby significantly increasing Jc at high field strengths. We anticipate that either chemical doping or mechanical processing should generate similar levels of disorder, and so achieve performance that is technologically attractive in an economically viable way.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...