RESUMEN
BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is a myopathy characterized by the loss of repressive epigenetic features affecting the D4Z4 locus (4q35). The assessment of DNA methylation at two regions (DUX4-PAS and DR1) of D4Z4 locus proved to be an effective method to detect epigenetic signatures compatible with FSHD. The present study aims at validating the employment of this method into clinical practice and improving the protocol by refining the classification thresholds of 4qA/4qA patients. To this purpose, 218 subjects with clinical suspicion of FSHD collected in 2022-2023 were analyzed. Each participant underwent in parallel the traditional FSHD molecular testing (D4Z4 sizing) and the proposed methylation assay. The results provided by both analyses were compared to evaluate the concordance and calculate the performance metrics of the methylation test. RESULTS: Among the 218 subjects, the 4q variant type distribution was 54% 4qA/4qA, 43% 4qA/4qB and 3% 4qB/4qB. The methylation analysis was performed only on carriers of at least one 4qA allele. After refining the classification threshold, the test reached the following performance metrics: sensitivity = 0.90, specificity = 1.00 and accuracy = 0.93. These results confirmed the effectiveness of the methylation assay in identifying patients with genetic signature compatible with FSHD1 and FSHD2 based on their DUX4-PAS and DR1 profile, respectively. The methylation data were also evaluated with respect to the clinical information. CONCLUSIONS: The study confirmed the ability of the method to accurately identify methylation profiles compatible with FSHD genetic signatures considering the 4q genotype. Moreover, the test allows the detection of hypomethylated profiles in asymptomatic patients, suggesting its potential application in identifying preclinical conditions in patients with positive family history and FSHD genetic signatures. Furthermore, the present work emphasizes the importance of interpreting methylation profiles considering the patients' clinical data.
Asunto(s)
Cromosomas Humanos Par 4 , Metilación de ADN , Distrofia Muscular Facioescapulohumeral , Humanos , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/diagnóstico , Metilación de ADN/genética , Masculino , Femenino , Cromosomas Humanos Par 4/genética , Adulto , Persona de Mediana Edad , Epigénesis Genética/genética , Proteínas de Homeodominio/genética , Anciano , Adulto JovenRESUMEN
INTRODUCTION/AIMS: Fatigue (subjective perception) and fatigability (objective motor performance worsening) are relevant aspects of disability in individuals with spinal muscular atrophy (SMA). The effect of nusinersen on fatigability in SMA patients has been investigated with conflicting results. We aimed to evaluate this in adult with SMA3. METHODS: We conducted a multicenter retrospective cohort study, including adult ambulant patients with SMA3, data available on 6-minute walk test (6MWT) and Hammersmith Functional Motor Scale-Expanded (HFMSE) at baseline and at least at 6 months of treatment with nusinersen. We investigated fatigability, estimated as 10% or higher decrease in walked distance between the first and sixth minute of the 6MWT, at baseline and over the 14-month follow-up. RESULTS: Forty-eight patients (56% females) were included. The 6MWT improved after 6, 10, and 14 months of treatment (p < 0.05). Of the 27 patients who completed the entire follow-up, 37% improved (6MWT distance increase ≥30 m), 48.2% remained stable, and 14.8% worsened (6MWT distance decline ≥30 m). Fatigability was found at baseline in 26/38 (68%) patients and confirmed at subsequent time points (p < 0.05) without any significant change over the treatment period. There was no correlation between fatigability and SMN2 copy number, sex, age at disease onset, age at baseline, nor with 6MWT total distance and baseline HFMSE score. DISCUSSION: Fatigability was detected at baseline in approximately 2/3 of SMA3 walker patients, without any correlation with clinical features, included motor performance. No effect on fatigability was observed during the 14-month treatment period with nusinersen.
Asunto(s)
Fatiga , Atrofia Muscular Espinal , Oligonucleótidos , Prueba de Paso , Humanos , Masculino , Femenino , Oligonucleótidos/uso terapéutico , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Fatiga/tratamiento farmacológico , Fatiga/etiología , Fatiga/fisiopatología , Fatiga/diagnóstico , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/fisiopatología , Adulto Joven , Resultado del Tratamiento , Estudios de Cohortes , Adolescente , Evaluación de Resultado en la Atención de Salud , Estudios de SeguimientoRESUMEN
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Asunto(s)
Cardiomiopatía Dilatada , Trasplante de Corazón , Distrofias Musculares , Humanos , Cardiomiopatía Dilatada/cirugía , Trasplante de Corazón/métodos , Distrofias Musculares/complicacionesRESUMEN
Glycogen Storage Disease (GSD) IXd, caused by PHKA1 gene mutations, is an X-linked rare disorder that can be asymptomatic or associated with exercise intolerance. GSD type II is an autosomal recessive disorder caused by mutations in the GAA gene that lead to severe cardiac and skeletal muscle myopathy. We report the first case of co-occurrence of type IXd and type II GSDs in a 53-year-old man with an atypical glycogen storage disease presentation consisting in myalgia in the lower limbs at both rest and after exercise and increased levels of transaminases from the age of 16. At the age of 43, the patient presented a steppage gait, inability to run and walk on his heels, hypotrophy of the pectoral and proximal muscles, reflexes not elicitable, and CK levels 3.6 times the upper reference limit. Next Generation Sequencing (NGS) identified one variant in the PHKA1 gene, c.1360A > G p.Ile454Val (exon 14) inherited by his mother, and two heterozygous variants in the GAA gene, c.784G > A (exon 4) and c.956-6T > C (exon 6). A review of GSD IXd cases reported to date in the literature is also provided.
Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Enfermedad del Almacenamiento de Glucógeno Tipo II , Enfermedad del Almacenamiento de Glucógeno , Masculino , Humanos , Persona de Mediana Edad , Enfermedad del Almacenamiento de Glucógeno/complicaciones , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , FenotipoRESUMEN
Andersen-Tawil syndrome (ATS) is a multisystem channelopathy characterized by periodic paralysis, ventricular arrhythmias, prolonged QT interval, and facial dysmorphisms occurring in the first/second decade of life. High phenotypic variability and incomplete penetrance of the genes causing the disease make its diagnosis still a challenge. We describe a three-generation family with six living individuals affected by ATS. The proband is a 37-year-old woman presenting since age 16, with episodes of muscle weakness and cramps in the pre-menstrual period. The father, two brothers, one paternal uncle and one cousin also complained of cramps, muscle stiffness, and weakness. Despite normal serum potassium concentration, treatment with potassium, magnesium, and acetazolamide alleviated paralysis attacks suggesting a dyskalemic syndrome. Dysmorphic features were noted in the proband, only later. On the ECG, all but one had normal QT intervals. The affected males developed metabolic syndrome or obesity. The father had two myocardial infarctions and was implanted with an intracardiac cardioverter defibrillator (ICD). A genetic investigation by WES analysis detected the heterozygous pathogenic variant (NM_000891.2: c.652C>T, p. Arg218Trp) in the KCNJ2 gene related to ATS, confirmed by segregation studies in all affected members. Furthermore, we performed a review of cases with the same mutation in the literature, looking for similarities and divergences with our family case.
Asunto(s)
Alelos , Síndrome de Andersen , Fenotipo , Canales de Potasio de Rectificación Interna , Adulto , Femenino , Humanos , Masculino , Síndrome de Andersen/genética , Mutación , Linaje , Canales de Potasio de Rectificación Interna/genéticaRESUMEN
Duchenne muscular dystrophy (DMD) is a devastating X-linked neuromuscular disorder caused by dystrophin gene deletions (75%), duplications (15-20%) and point mutations (5-10%), a small portion of which are nonsense mutations. Women carrying dystrophin gene mutations are commonly unaffected because the wild X allele may produce a sufficient amount of the dystrophin protein. However, approximately 8-10% of them may experience muscle symptoms and 50% of those over 40 years develop cardiomyopathy. The presence of symptoms defines the individual as an affected "symptomatic or manifesting carrier". Though there is no effective cure for DMD, therapies are available to slow the decline of muscle strength and delay the onset and progression of cardiac and respiratory impairment. These include ataluren for patients with nonsense mutations, and antisense oligonucleotides therapies, for patients with specific deletions. Symptomatic DMD female carriers are not included in these indications and little data documenting their management, often entrusted to the discretion of individual doctors, is present in the literature. In this article, we report the clinical and instrumental outcomes of four symptomatic DMD carriers, aged between 26 and 45 years, who were treated with ataluren for 21 to 73 months (average 47.3), and annually evaluated for muscle strength, respiratory and cardiological function. Two patients retain independent ambulation at ages 33 and 45, respectively. None of them developed respiratory involvement or cardiomyopathy. No clinical adverse effects or relevant abnormalities in routine laboratory values, were observed.
Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Oxadiazoles , Humanos , Femenino , Preescolar , Distrofina/genética , Proyectos Piloto , Codón sin Sentido , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapiaRESUMEN
Background: Dilated cardiomyopathy (DCM) is a major complication of, and leading cause of mortality in Duchenne muscular dystrophy (DMD). Its severity, age at onset, and rate of progression display wide variability, whose molecular bases have been scarcely elucidated. Potential DCM-modifying factors include glucocorticoid (GC) and cardiological treatments, DMD mutation type and location, and variants in other genes. Methods and Results: We retrospectively collected 3138 echocardiographic measurements of left ventricular ejection fraction (EF), shortening fraction (SF), and end-diastolic volume (EDV) from 819 DMD participants, 541 from an Italian multicentric cohort and 278 from the Cooperative International Neuromuscular Group Duchenne Natural History Study (CINRG-DNHS). Using generalized estimating equation (GEE) models, we estimated the yearly rate of decrease of EF (-0.80%) and SF (-0.41%), while EDV increase was not significantly associated with age. Utilizing a multivariate generalized estimating equation (GEE) model we observed that mutations preserving the expression of the C-terminal Dp71 isoform of dystrophin were correlated with decreased EDV (-11.01âmL/m2, pâ=â0.03) while for dp116 were correlated with decreased EF (-4.14%, pâ=â<0.001). The rs10880 genotype in the LTBP4 gene, previously shown to prolong ambulation, was also associated with increased EF and decreased EDV (+3.29%, pâ=â0.002, and -10.62âmL/m2, pâ=â0.008) with a recessive model. Conclusions: We quantitatively describe the progression of systolic dysfunction progression in DMD, confirm the effect of distal dystrophin isoform expression on the dystrophin-deficient heart, and identify a strong effect of LTBP4 genotype of DCM in DMD.
Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Haplotipos , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicaciones , Cardiomiopatías/etiología , Cardiomiopatías/genética , Isoformas de Proteínas/genética , Proteínas de Unión a TGF-beta Latente/genéticaRESUMEN
DAG1 encodes for dystroglycan, a key component of the dystrophin-glycoprotein complex (DGC) with a pivotal role in skeletal muscle function and maintenance. Biallelic loss-of-function DAG1 variants cause severe muscular dystrophy and muscle-eye-brain disease. A possible contribution of DAG1 deficiency to milder muscular phenotypes has been suggested. We investigated the genetic background of twelve subjects with persistent mild-to-severe hyperCKemia to dissect the role of DAG1 in this condition. Genetic testing was performed through exome sequencing (ES) or custom NGS panels including various genes involved in a spectrum of muscular disorders. Histopathological and Western blot analyses were performed on muscle biopsy samples obtained from three patients. We identified seven novel heterozygous truncating variants in DAG1 segregating with isolated or pauci-symptomatic hyperCKemia in all families. The variants were rare and predicted to lead to nonsense-mediated mRNA decay or the formation of a truncated transcript. In four cases, DAG1 variants were inherited from similarly affected parents. Histopathological analysis revealed a decreased expression of dystroglycan subunits and Western blot confirmed a significantly reduced expression of beta-dystroglycan in muscle samples. This study supports the pathogenic role of DAG1 haploinsufficiency in isolated or pauci-symptomatic hyperCKemia, with implications for clinical management and genetic counseling.
Asunto(s)
Enfermedades Musculares , Distrofias Musculares , Humanos , Distroglicanos/genética , Distroglicanos/metabolismo , Haploinsuficiencia , Distrofias Musculares/genética , Músculo Esquelético/patología , Enfermedades Musculares/patologíaRESUMEN
Duchenne muscular dystrophy (DMD) is a neuromuscular condition characterized by muscle weakness. The Performance of upper limb (PUL) test is designed to evaluate upper limb function in DMD patients across three domains. The aim of this study is to identify frequently lost or gained PUL 2.0 abilities at distinct functional stages in DMD patients. This retrospective study analyzed prospectively collected data on 24-month PUL 2.0 changes related to ambulatory function. Ambulant patients were categorized based on initial 6MWT distance, non-ambulant patients by time since ambulation loss. Each PUL 2.0 item was classified as shift up, no change, or shift down. The study's cohort incuded 274 patients, with 626 paired evaluations at the 24-month mark. Among these, 55.1 % had activity loss, while 29.1 % had gains. Ambulant patients showed the lowest loss rates, mainly in the shoulder domain. The highest loss rate was in the shoulder domain in the transitioning subgroup and in elbow and distal domains in the non-ambulant patients. Younger ambulant patients demonstrated multiple gains, whereas in the other functional subgroups there were fewer gains, mostly tied to singular activities. Our findings highlight divergent upper limb domain progression, partly linked to functional status and baseline function.
Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/complicaciones , Estudios Retrospectivos , Extremidad Superior , Caminata , Debilidad MuscularRESUMEN
Introduction: Hypophosphatasia (HPP) is a rare genetic disease caused by inactivating variants of the ALPL gene. Few data are available on the clinical presentation in Italy and/or on Italian HPP surveys. Methods: There were 30 suspected HPP patients recruited from different Italian tertiary cares. Biological samples and related clinical, biochemical, and anamnestic data were collected and the ALPL gene sequenced. Search for large genomic deletions at the ALPL locus (1p36) was done. Phylogenetic conservation and modeling were applied to infer the effect of the variants on the protein structure. Results: There were 21 ALPL variants and one large genomic deletion found in 20 out of 30 patients. Unexpectedly, NGS-driven differential diagnosis allowed uncovering three hidden additional HPP cases, for a total of 33 HPP subjects. Eight out of 24 coding variants were novel and classified as "pathogenic", "likely pathogenic", and "variants of uncertain significance". Bioinformatic analysis confirmed that all the variants strongly destabilize the homodimer structure. There were 10 cases with low ALP and high VitB6 that resulted negative to genetic testing, whereas two positive cases have an unexpected normal ALP value. No association was evident with other biochemical/clinical parameters. Discussion: We present the survey of HPP Italian patients with the highest ALPL mutation rate so far reported and confirm the complexity of a prompt recognition of the syndrome, mostly for HPP in adults. Low ALP and high VitB6 values are mandatory for the genetic screening, this latter remaining the gold standard not only to confirm the clinical diagnosis but also to make differential diagnosis, to identify carriers, to avoid likely dangerous therapy in unrecognized cases.
Asunto(s)
Hipofosfatasia , Adulto , Humanos , Hipofosfatasia/diagnóstico , Hipofosfatasia/epidemiología , Hipofosfatasia/genética , Filogenia , Biología Computacional , Diagnóstico Diferencial , Italia/epidemiología , Enfermedades RarasRESUMEN
Disrupting variants in the DMD gene are associated with Duchenne or Becker muscular dystrophy (DMD/BMD) or with hyperCKemia, all of which present very different degrees of clinical severity. The clinical phenotypes of these disorders could not be distinguished in infancy or early childhood. Accurate phenotype prediction based on DNA variants may therefore be required in addition to invasive tests, such as muscle biopsy. Transposon insertion is one of the rarest mutation types. Depending on their position and characteristics, transposon insertions may affect the quality and/or quantity of dystrophin mRNA, leading to unpredictable alterations in gene products. Here, we report the case of a three-year-old boy showing initial skeletal muscle involvement in whom we characterized a transposon insertion (Alu sequence) in exon 15 of the DMD gene. In similar cases, the generation of a null allele is predicted, resulting in a DMD phenotype. However, mRNA analysis of muscle biopsy tissue revealed skipping of exon 15, which restored the reading frame, thus predicting a milder phenotype. This case is similar to very few others already described in the literature. This case further enriches our knowledge of the mechanisms perturbing splicing and causing exon skipping in DMD, helping to properly guide clinical diagnosis.
Asunto(s)
Distrofia Muscular de Duchenne , Oligonucleótidos Antisentido , Humanos , Preescolar , Oligonucleótidos Antisentido/genética , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mutación , Músculo Esquelético/patología , ARN Mensajero/genéticaRESUMEN
Pompe disease (PD) is a monogenic autosomal recessive disorder caused by biallelic pathogenic variants of the GAA gene encoding lysosomal alpha-glucosidase; its loss causes glycogen storage in lysosomes, mainly in the muscular tissue. The genotype-phenotype correlation has been extensively discussed, and caution is recommended when interpreting the clinical significance of any mutation in a single patient. As there is no evidence that environmental factors can modulate the phenotype, the observed clinical variability in PD suggests that genetic variants other than pathogenic GAA mutations influence the mechanisms of muscle damage/repair and the overall clinical picture. Genes encoding proteins involved in glycogen synthesis and catabolism may represent excellent candidates as phenotypic modifiers of PD. The genes analyzed for glycogen synthesis included UGP2, glycogenin (GYG1-muscle, GYG2, and other tissues), glycogen synthase (GYS1-muscle and GYS2-liver), GBE1, EPM2A, NHLRC1, GSK3A, and GSK3B. The only enzyme involved in glycogen catabolism in lysosomes is α-glucosidase, which is encoded by GAA, while two cytoplasmic enzymes, phosphorylase (PYGB-brain, PGL-liver, and PYGM-muscle) and glycogen debranching (AGL) are needed to obtain glucose 1-phosphate or free glucose. Here, we report the potentially relevant variants in genes related to glycogen synthesis and catabolism, identified by whole exome sequencing in a group of 30 patients with late-onset Pompe disease (LOPD). In our exploratory analysis, we observed a reduced number of variants in the genes expressed in muscles versus the genes expressed in other tissues, but we did not find a single variant that strongly affected the phenotype. From our work, it also appears that the current clinical scores used in LOPD do not describe muscle impairment with enough qualitative/quantitative details to correlate it with genes that, even with a slightly reduced function due to genetic variants, impact the phenotype.
RESUMEN
INTRODUCTION: The Performance of Upper Limb version 2.0 (PUL 2.0) is increasingly used in Duchenne Muscular Dystrophy (DMD) to study longitudinal functional changes of motor upper limb function in ambulant and non-ambulant patients. The aim of this study was to evaluate changes in upper limb functions in patients carrying mutations amenable to skipping exons 44, 45, 51 and 53. METHODS: All DMD patients were assessed using the PUL 2.0 for at least 2 years, focusing on 24-month paired visits in those with mutations eligible for skipping exons 44, 45, 51 and 53. RESULTS: 285 paired assessments were available. The mean total PUL 2.0 12-month change was -0.67 (2.80), -1.15 (3.98), -1.46 (3.37) and -1.95 (4.04) in patients carrying mutations amenable to skipping exon 44, 45, 51 and 53, respectively. The mean total PUL 2.0 24-month change was -1.47 (3.73), -2.78 (5.86), -2.95 (4.56) and -4.53 (6.13) in patients amenable to skipping exon 44, 45, 51 and 53, respectively. The difference in PUL 2.0 mean changes among the type of exon skip class for the total score was not significant at 12 months but was significant at 24 months for the total score (p < 0.001), the shoulder (p = 0.01) and the elbow domain (p < 0.001), with patients amenable to skipping exon 44 having smaller changes compared to those amenable to skipping exon 53. There was no difference within ambulant or non-ambulant cohorts when subdivided by exon skip class for the total and subdomains score (p > 0.05). CONCLUSIONS: Our results expand the information on upper limb function changes detected by the PUL 2.0 in a relatively large group of DMD patients with distinct exon-skipping classes. This information can be of help when designing clinical trials or in the interpretation of the real world data including non-ambulant patients.
RESUMEN
BACKGROUND: The performance of upper limb 2.0 (PUL) is widely used to assess upper limb function in DMD patients. The aim of the study was to assess 24 month PUL changes in a large cohort of DMD patients and to establish whether domains changes occur more frequently in specific functional subgroups. METHODS: The PUL was performed in 311 patients who had at least one pair of assessments at 24 months, for a total of 808 paired assessments. Ambulant patients were subdivided according to the ability to walk: >350, 250-350, ≤250 meters. Non ambulant patients were subdivided according to the time since they lost ambulation: <1, 1-2, 2-5 or >5 years. RESULTS: At 12 months, the mean PUL 2.0 change on all the paired assessments was -1.30 (-1.51--1.05) for the total score, -0.5 (-0.66--0.39) for the shoulder domain, -0.6 (-0.74--0.5) for the elbow domain and -0.1 (-0.20--0.06) for the distal domain.At 24 months, the mean PUL 2.0 change on all the paired assessments was -2.9 (-3.29--2.60) for the total score, -1.30 (-1.47--1.09) for the shoulder domain, -1.30 (-1.45--1.11) for the elbow domain and -0.4 (-1.48--1.29) for the distal domain.Changes at 12 and 24 months were statistically significant between subgroups with different functional abilities for the total score and each domain (pâ<â0.001). CONCLUSION: There were different patterns of changes among the functional subgroups in the individual domains. The time of transition, including the year before and after loss of ambulation, show the peak of negative changes in PUL total scores that reflect not only loss of shoulder but also of elbow activities. These results suggest that patterns of changes should be considered at the time of designing clinical trials.
Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Actividades Cotidianas , Extremidad Superior , CaminataRESUMEN
Muscular dystrophies (MDs) make up a clinically and genetically heterogeneous group of skeletal muscle diseases with progressive muscle weakness and atrophy [...].
Asunto(s)
Distrofias Musculares , Humanos , Distrofias Musculares/genética , Distrofias Musculares/terapia , Terapia Genética , AtrofiaRESUMEN
The contiguous gene deletion syndromes (CGDS) are rare genomic disorders resulting from the deletion of large segments of DNA, manifested as the concurrence of apparently unrelated clinical features. A typical example of CGDS is Xp21 contiguous gene deletion syndrome that involves GK and its neigh-boring genes (usually DMD and NR0B1) and results in a complex phenotype, which is related to the size of deletion and involved genes. Development delay and intellectual disability are almost a constant feature of patients with CGDS. We report the case of a boy with Duchenne muscular dystrophy (DMD) and glycerol kinase deficiency (GKD) as part of the contiguous gene deletion syndrome Xp2.1, in association with intellectual disability (ID) in whom multiplex ligation-dependent probe amplification (MLPA) test first identified a hemizygous deletion involving the entire dystrophin gene. Subsequently, the array CGH study identified a maternally inherited hemizygous deletion of the Xp21.2-Xp21.1 region of approximately 3.7Mb that included both DMD and GK genes confirming the diagnosis of Xp21 CGDS. Moreover, we report a review of the cases published in the literature over the last 20 years, for which a better description of the genes involved in the syndrome was available. Intellectual disability does not appear as a constant feature of the syndrome, reiterating the concept that complex GKD syndrome results from small deletions that affect closely related but separate loci for DMD, GK and adrenal hypoplasia, rather than a single large deletion including all genes. This case highlights the importance of more in-depth genetic investigations in presence of apparently unrelated clinical findings, allowing an accurate diagnosis of contiguous gene deletion syndromes.
Asunto(s)
Discapacidad Intelectual , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Insuficiencia Corticosuprarrenal Familiar/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Glicerol Quinasa/genética , Eliminación de GenRESUMEN
Dystrophinopathies are X-linked recessive muscle disorders caused by mutations in the dystrophin (DMD) gene that include deletions, duplications, and point mutations. Correct diagnosis is important for providing adequate patient care and family planning, especially at this time when mutation-specific therapies are available. We report a large single-centre study on the spectrum of DMD gene variants observed in 750 patients analyzed for suspected Duchenne (DMD) or Becker (BMD) muscular dystrophy, over the past 30 years, at the Cardiomyology and Medical Genetics of the University of Campania. We found 534 (71.21%) large deletions, 73 (9.73%) large duplications, and 112 (14.93%) point mutations, of which 44 (5.9%) were small ins/del causing frame-shifts, 57 (7.6%) nonsense mutations, 8 (1.1%) splice site and 3 (0.4%) intronic mutations, and 31 (4.13%) non mutations. Moreover, we report the prevalence of the different types of mutations in patients with DMD and BMD according to their decade of birth, from 1930 to 2020, and correlate the data to the different techniques used over the years. In the most recent decades, we observed an apparent increase in the prevalence of point mutations, probably due to the use of Next-Generation Sequencing (NGS). In conclusion, in southern Italy, deletions are the most frequent variation observed in DMD and BMD patients followed by point mutations and duplications, as elsewhere in the world. NGS was useful to identify point mutations in cases of strong suspicion of DMD/BMD negative on deletions/duplications analyses. In the era of personalized medicine and availability of new causative therapies, a collective effort is necessary to enable DMD and BMD patients to have timely genetic diagnoses and avoid late implementation of standard of care and late initiation of appropriate treatment.
Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Estudios Retrospectivos , Exones , MutaciónRESUMEN
Mutations in the human desmin gene (DES) may cause both autosomal dominant and recessive cardiomyopathies leading to heart failure, arrhythmias and atrio-ventricular blocks, or progressive myopathies. Cardiac conduction disorders, arrhythmias and cardiomyopathies usually associated with progressive myopathy are the main manifestations of autosomal dominant desminopathies, due to mono-allelic pathogenic variants. The recessive forms, due to bi-allelic variants, are very rare and exhibit variable phenotypes in which premature sudden cardiac death could also occur in the first or second decade of life. We describe a further case of autosomal recessive desminopathy in an Italian boy born of consanguineous parents, who developed progressive myopathy at age 12, and dilated cardiomyopathy four years later and died of intractable heart failure at age 17. Next Generation Sequencing (NGS) analysis identified the homozygous loss-of-function variant c.634C>T; p.Arg212*, which was likely inherited from both parents. Furthermore, we performed a comparison of clinical and genetic results observed in our patient with those of cases so far reported in the literature.
Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Miopatías Estructurales Congénitas , Masculino , Humanos , Niño , Adolescente , Desmina/genética , Músculo Esquelético/patología , Cardiomiopatías/patología , Miopatías Estructurales Congénitas/patología , Mutación , Arritmias Cardíacas/patología , Insuficiencia Cardíaca/patología , LinajeRESUMEN
Myotonic Dystrophy type 1 (DM1) is the most common muscular dystrophy in adults, affecting 1:8000 individuals. It is a multi-systemic disorder involving muscle, heart, endocrine and respiratory apparatus and eye. The eye symptoms can include ptosis, external ophthalmoplegia, epiphora, and early onset cataracts. Cataracts occur at a much earlier age (usually between 30 and 40) than the general population, where females are usually affected more than men. We studied gender differences in cataract prevalence and treatment age in 243 DM1 patients (134 M; 109 F), aged 18 to 70 years, who were subsequently screened at routine follow-up. For each patient, information was collected on age, sex, CTG expansion, age of cataract onset, and age at cataract surgery, when available. Seventy-three patients, 30 females and 43 males, had cataracts, at a mean age of onset of 41.14 ± 12.64 in females, and 40.36 ± 10.03 in males. Sixty-nine of them underwent cataract surgery, males at an earlier age than females (42.8 ± 9.8 years versus 47.3 ± 12.6 years) and in 52.5% of cases before the age of 40, compared to 17.2% of females. The difference was statistically significant. The assumption that females in general and those with DM1 in particular develop cataracts more frequently and earlier than males is not confirmed, at least in this study. A possible explanation for these results could be related to non-advanced age, the protective role of estrogen and the lower prevalence of smoking in the study population.