RESUMEN
Following the invitation of Biomedicines, we decided to accept the project of this Special Issue because we believe that in many situations gender prejudices still exist and put women in a disadvantaged position for the dissemination of their research, preventing the scientific community from benefiting from a plurality of voices in the interpretation of scientific research [...].
RESUMEN
Introduction: In causal inference, the correct formulation of the scientific question of interest is a crucial step. The purpose of this study was to apply causal inference principles to external control analysis using observational data and illustrate the process to define the estimand attributes. Methods: This study compared long-term survival outcomes of a pooled set of three previously reported randomized phase 3 trials studying patients with metastatic non-small cell lung cancer receiving front-line chemotherapy and similar patients treated with front-line chemotherapy as part of routine clinical care. Causal inference frameworks were applied to define the estimand aligned with the research question and select the estimator to estimate the estimand of interest. Results: The estimand attributes of the ideal trial were defined using the estimand framework. The target trial framework was used to address specific issues in defining the estimand attributes using observational data from a nationwide electronic health record-derived de-identified database. The two frameworks combined allow to clearly define the estimand and the aligned estimator while accounting for key baseline confounders, index date, and receipt of subsequent therapies. The hazard ratio estimate (point estimate with 95% confidence interval) comparing the randomized clinical trial pooled control arm with the external control was close to 1, which is indicative of similar survival between the two arms. Discussion: The proposed combined framework provides clarity on the causal contrast of interest and the estimator to adopt, and thus facilitates design and interpretation of the analyses.
RESUMEN
Taking into account the patient's gender is the first step towards more precise and egalitarian medicine. The gender-related divergences observed in purine catabolism and their pathological consequences are good examples of gender medicine differences. Uric acid is produced by the activity of xanthine oxidoreductase (XOR). The serum levels of both XOR activity and uric acid differ physiologically between the genders, being higher in men than in women. Their higher levels have been associated with gout and hypertension, as well as with vascular, cardiac, renal, and metabolic diseases. The present review analyzes the gender-related differences in these pathological conditions in relation to increases in the serum levels of XOR and/or uric acid and the opportunity for gender-driven pharmacological treatment.
RESUMEN
PURPOSE: On the basis of the results from CLEOPATRA, pertuzumab plus trastuzumab and chemotherapy is the first-line standard of care for human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (MBC). However, discrepancies have been reported between clinical trial and real-world outcomes. We report real-world outcomes for patients with HER2-positive MBC treated with first-line pertuzumab plus trastuzumab and a taxane in routine clinical practice in the United States. METHODS: A retrospective analysis was conducted using electronic health record-derived deidentified data from the Flatiron Health database. Patients were grouped according to the first taxane received (paclitaxel/nab-paclitaxel or docetaxel). Median real-world progression-free survival (rwPFS) and overall survival (rwOS) was estimated using Kaplan-Meier methodology. Subgroup analyses were conducted in patients treated with docetaxel who met CLEOPATRA's key eligibility criteria. RESULTS: We included 1,065 patients; 313 patients received paclitaxel/nab-paclitaxel and 752 received docetaxel. Patients who received paclitaxel/nab-paclitaxel were older, had a worse Eastern Cooperative Oncology Group Performance Status, and had more recurrent metastatic disease compared with the docetaxel group. After adjustment for potential confounders, similar median rwPFS (inverse probability of treatment weighted average treatment effect for the treated [IPTW-ATT] hazard ratio [HR], 1.09; 95% CI, 0.9 to 1.3; P = .365) and rwOS (IPTW-ATT HR, 1.23; 95% CI, 0.96 to 1.58; P = .101) was observed between treatment groups. In the subgroup of CLEOPATRA-eligible patients, median rwPFS and rwOS were 16.9 months and 57.8 months, respectively. CONCLUSION: There was no statistically significant difference in real-world outcomes between patients treated with paclitaxel/nab-paclitaxel and those treated with docetaxel. Selecting patients using key CLEOPATRA eligibility criteria resulted in rwPFS and rwOS similar to those observed in CLEOPATRA, highlighting the importance of ensuring similar patient populations when comparing clinical trial and real-world data.
Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Docetaxel/farmacología , Docetaxel/uso terapéutico , Registros Electrónicos de Salud , Estudios Retrospectivos , Trastuzumab/uso terapéutico , Taxoides/farmacología , Taxoides/uso terapéutico , Paclitaxel/farmacología , Paclitaxel/uso terapéuticoRESUMEN
Saporin is a type 1 ribosome-inactivating protein widely used as toxic payload in the construction of targeted toxins, chimeric molecules formed by a toxic portion linked to a carrier moiety. Among the most used carriers, there are large molecules (mainly antibodies) and small molecules (such as neurotransmitters, growth factors and peptides). Some saporin-containing targeted toxins have been used for the experimental treatment of several diseases, giving very promising results. In this context, one of the reasons for the successful use of saporin lies in its resistance to proteolytic enzymes and to conjugation procedures. In this paper, we evaluated the influence of derivatization on saporin using three heterobifunctional reagents, namely 2-iminothiolane (2-IT), N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) and 4-succinimidyloxycarbonyl-α-methyl-α-[2-pyridyldithio]toluene (SMPT). In order to obtain the highest number of inserted -SH groups with the lowest reduction of saporin biological activities, we assessed the residual ability of saporin to inhibit protein synthesis, to depurinate DNA and to induce cytotoxicity after derivatization. Our results demonstrate that saporin maintains an excellent resistance to derivatization processes, especially with SPDP, and permit us to define reaction conditions, in which saporin biological properties may not be altered. Therefore, these findings provide useful information for the construction of saporin-based targeted toxins, especially with small carriers.
RESUMEN
Introduction: Alectinib was found to have superior efficacy to crizotinib in the phase 3 ALEX study and is a preferred initial treatment for patients with advanced ALK-positive NSCLC. To understand the efficacy of alectinib in U.S. clinical practice, we conducted a retrospective real-world comparative effectiveness analysis of first-line alectinib versus crizotinib. Methods: Adults with advanced ALK-positive NSCLC who received first-line alectinib (from December 11, 2015) or crizotinib (from January 1, 2014) were included from a real-world database. Propensity scores were applied to balance baseline characteristics. Real-world data (RWD), including real-world progression-free survival (rwPFS), real-world overall survival, real-world time to new central nervous system (CNS) metastases, and outcomes in patients with or without baseline CNS metastases were analyzed. The ALEX-like RWD cohort (filtered by ALEX laboratory eligibility criteria) was used to compare real-world comparative effectiveness with ALEX. Results: The RWD cohort comprised 364 patients (141 alectinib; 223 crizotinib); rwPFS (weighted hazard ratio [wHR] = 0.46, 95% confidence interval [CI]: 0.33-0.65) and real-world overall survival (wHR = 0.46, 95% CI: 0.31-0.69) were significantly improved with alectinib versus crizotinib. In patients with baseline brain scans, a substantial rwPFS benefit was found regardless of baseline CNS metastases. Real-world time to new CNS metastases was delayed with alectinib versus crizotinib in patients with (wHR = 0.28, 95% CI: 0.16-0.52) and without (wHR = 0.42, 95% CI: 0.24-0.76) baseline CNS metastases. The ALEX-like RWD cohort comprised 325 patients (120 alectinib; 205 crizotinib); alectinib was found to have similar rwPFS benefits with ALEX. Conclusions: Outcomes were significantly improved with first-line alectinib versus crizotinib in patients with advanced ALK-positive NSCLC in the U.S. real-world setting.
RESUMEN
Ribosome-inactivating proteins (RIPs) are plant toxins that were identified for their ability to irreversibly damage ribosomes, thereby causing arrest of protein synthesis and induction of cell death. The RIPs purified from Adenia plants are the most potent ones. Here, we describe a novel toxic lectin from Adenia heterophylla caudex, which has been named heterophyllin. Heterophyllin shows the enzymatic and lectin properties of type 2 RIPs. Interestingly, in immunoreactivity experiments, heterophyllin poorly cross-reacts with sera against all other tested RIPs. The cytotoxic effects and death pathways triggered by heterophyllin were investigated in three human-derived cell lines: NB100, T24, and MCF7, and compared to ricin, the most known and studied type 2 RIP. Heterophyllin was able to completely abolish cell viability at nM concentration. A strong induction of apoptosis, but not necrosis, and the involvement of oxidative stress and necroptosis were observed in all the tested cell lines. Therefore, the enzymatic, immunological, and biological activities of heterophyllin make it an interesting molecule, worthy of further in-depth analysis to verify its possible pharmacological application.
Asunto(s)
Proteínas de Plantas , Ricina , Humanos , Proteínas de Plantas/metabolismo , Proteínas Inactivadoras de Ribosomas Tipo 2/metabolismo , Ricina/toxicidad , Ricina/metabolismo , Proteínas Inactivadoras de Ribosomas/toxicidad , Proteínas Inactivadoras de Ribosomas/metabolismo , Ribosomas/metabolismo , Biosíntesis de ProteínasRESUMEN
Immune checkpoint mechanisms are important molecular cell systems that maintain tolerance toward autoantigens in order to prevent immunity-mediated accidental damage. It is well known that cancer cells may exploit these molecular and cellular mechanisms to escape recognition and elimination by immune cells. Programmed cell death protein-1 (PD-1) and its natural ligand programmed cell death ligand-1 (PD-L1) form the PD-L1/PD-1 axis, a well-known immune checkpoint mechanism, which is considered an interesting target in cancer immunotherapy. In fact, the expression of PD-L1 was found in various solid malignancies and the overactivation of PD-L1/PD-1 axis results in a poor patient survival rate. Breaking PD-L1/PD-1 axis, by blocking either the cancer side or the immune side of the axis, is currently used as anti-cancer strategy to re-establish a tumor-specific immune response. For this purpose, several blocking antibodies are now available. To date, three anti-PD-L1 antibodies have been approved by the FDA, namely atezolizumab, durvalumab and avelumab. The main advantages of anti-PD-L1 antibodies arise from the overexpression of PD-L1 antigen by a high number of tumor cells, also deriving from different tissues; this makes anti-PD-L1 antibodies potential pan-specific anti-cancer molecules. Despite the good results reported in clinical trials with anti-PD-L1 antibodies, there is a significant number of patients that do not respond to the therapy. In fact, it should be considered that, in some neoplastic patients, reduced or absent infiltration of cytotoxic T cells and natural killer cells in the tumor microenvironment or presence of other immunosuppressive molecules make immunotherapy with anti-PD-L1 blocking antibodies less effective. A strategy to improve the efficacy of antibodies is to use them as carriers for toxic payloads (toxins, drugs, enzymes, radionuclides, etc.) to form immunoconjugates. Several immunoconjugates have been already approved by FDA for treatment of malignancies. In this review, we focused on PD-L1 targeting antibodies utilized as carrier to construct immunoconjugates for the potential elimination of neoplastic cells, expressing PD-L1. A complete examination of the literature regarding anti-PD-L1 immunoconjugates is here reported, describing the results obtained in vitro and in vivo. The real potential of anti-PD-L1 antibodies as carriers for toxic payload delivery is considered and extensively discussed.
RESUMEN
The present review explores the role of xanthine oxidoreductase (XOR) in the development and progression of chronic kidney disease (CKD). Human XOR is a multi-level regulated enzyme, which has many physiological functions, but that is also implicated in several pathological processes. The main XOR activities are the purine catabolism, which generates uric acid, and the regulation of cell redox state and cell signaling, through the production of reactive oxygen species. XOR dysregulation may lead to hyperuricemia and oxidative stress, which could have a pathogenic role in the initial phases of CKD, by promoting cell injury, hypertension, chronic inflammation and metabolic derangements. Hypertension is common in CKD patients and many mechanisms inducing it (upregulation of renin-angiotensin-aldosterone system, endothelial dysfunction and atherosclerosis) may be influenced by XOR products. High XOR activity and hyperuricemia are also risk factors for obesity, insulin resistance, type 2 diabetes and metabolic syndrome that are frequent CKD causes. Moreover, CKD is common in patients with gout, which is characterized by hyperuricemia, and in patients with cardiovascular diseases, which are associated with hypertension, endothelial dysfunction and atherosclerosis. Although hyperuricemia is undoubtedly related to CKD, controversial findings have been hitherto reported in patients treated with urate-lowering therapies.
Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Hipertensión , Hiperuricemia , Insuficiencia Renal Crónica , Humanos , Hiperuricemia/tratamiento farmacológico , Purinas , Especies Reactivas de Oxígeno/metabolismo , Ácido Úrico , Xantina Deshidrogenasa/metabolismoRESUMEN
The use of radio- and chemotherapeutic agents in cancer therapy have demonstrated evident antitumor effects, but also limitations (remarkable side-effects due to lack of selectivity for tumor cells, development of drug resistance, and occurrence of secondary malignancies) [...].
RESUMEN
The concept of "magic bullets", i [...].
Asunto(s)
Inmunotoxinas/uso terapéutico , Toxinas Biológicas/uso terapéutico , HumanosRESUMEN
Kirkiin is a new type 2 ribosome-inactivating protein (RIP) purified from the caudex of Adenia kirkii with a cytotoxicity compared to that of stenodactylin. The high toxicity of RIPs from Adenia genus plants makes them interesting tools for biotechnology and therapeutic applications, particularly in cancer therapy. The complete amino acid sequence and 3D structure prediction of kirkiin are here reported. Gene sequence analysis revealed that kirkiin is encoded by a 1572 bp open reading frame, corresponding to 524 amino acid residues, without introns. The amino acid sequence analysis showed a high degree of identity with other Adenia RIPs. The 3D structure of kirkiin preserves the overall folding of type 2 RIPs. The key amino acids of the active site, described for ricin and other RIPs, are also conserved in the kirkiin A chain. Sugar affinity studies and docking experiments revealed that both the 1α and 2γ sites of the kirkiin B chain exhibit binding activity toward lactose and D-galactose, being lower than ricin. The replacement of His246 in the kirkiin 2γ site instead of Tyr248 in ricin causes a different structure arrangement that could explain the lower sugar affinity of kirkiin with respect to ricin.
Asunto(s)
Secuencia de Aminoácidos , Sitios de Unión , Proteínas Inactivadoras de Ribosomas Tipo 2/química , Proteínas Inactivadoras de Ribosomas Tipo 2/genética , Dominio Catalítico , Simulación del Acoplamiento Molecular , Passifloraceae/química , Passifloraceae/genética , Proteínas de Plantas/química , Dominios Proteicos , Ricina/química , Análisis de Secuencia de ADNRESUMEN
Cardiovascular diseases (CVD) are the leading cause of global mortality and their pathogenesis lies mainly in the atherosclerotic process. There are close connections linking oxidative stress and inflammation to endothelial dysfunction, atherosclerosis and, consequently, to CVD. This review focuses on the role of xanthine oxidoreductase (XOR) and its products on the development of chronic inflammation and oxidative stress, responsible for atheromatous plaque formation. Evidence is reported that an excessive level of XOR products favors inflammatory response and plaque development, thereby promoting major cardiovascular risk factors. Also, the relationship between hyperuricemia and hypertension as well as between XOR activity and CVD is confirmed. In spite of the increasing number of clinical studies investigating the output of cardiovascular patients treated with urate-lowering therapies (including uricosuric drugs, XOR inhibitors and recombinant uricase) the results are still uncertain. The inhibition of XOR activity appears more promising than just the control of uricemia level in preventing cardiovascular events, possibly because it also reduces the intracellular accumulation of urate, as well as the production of reactive oxygen species. However, XOR inhibition also reduces the availability of the multifaced mediator nitric oxide and, at present, can be recommended only in hyperuricemic patients.
RESUMEN
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Oncología Médica , Nanomedicina , Paclitaxel/uso terapéutico , Animales , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Composición de Medicamentos , Sinergismo Farmacológico , Femenino , Humanos , Nanopartículas , Paclitaxel/efectos adversos , Paclitaxel/químicaRESUMEN
Sarcomas are one of the most difficult type of cancer to manage and treat because of their extremely heterogeneous molecular and morphological features. Despite the progress made over the years in the establishment of standard protocols for high and low grading/staging sarcoma patients, mostly with chemotherapy and/or radiotherapy, 50% of treated patients experience relapse episodes. Because of this, in the last 20 years, new therapeutic approaches for sarcoma treatment have been evaluated in preclinical and clinical studies. Among them, antibody-based therapies have been the most studied. Immunoconjugates consist of a carrier portion, frequently represented by an antibody, linked to a toxic moiety, i.e., a drug, toxin, or radionuclide. While the efficacy of immunoconjugates is well demonstrated in the therapy of hematological tumors and more recently also of epithelial ones, their potential as therapeutic agents against sarcomas is still not completely explored. In this paper, we summarize the results obtained with immunoconjugates targeting sarcoma surface antigens, considering both preclinical and clinical studies. To date, the encouraging results obtained in preclinical studies allowed nine immunoconjugates to enter clinical trials, demonstrating the validity of immunotherapy as a promising pharmacological tool also for sarcoma therapy.
RESUMEN
Human xanthine oxidoreductase (XOR) is a multiple-level regulated enzyme, resulting from a complicated evolutionary process that assigned it many physiological roles. The main XOR activities are: (i) xanthine dehydrogenase (XDH) activity that performs the last two steps of purine catabolism, from hypoxanthine to uric acid; (ii) xanthine oxidase (XO) activity that, besides purine catabolism, produces reactive oxygen species (ROS); (iii) nitrite reductase activity that generates nitric oxide, contributing to vasodilation and regulation of blood pressure; (iv) NADH oxidase activity that produces ROS. All these XOR activities contribute also to metabolize various endogenous and exogenous compounds, including some drugs. About XOR products, it should be considered that (i) uric acid is not only a proinflammatory agent, but also a fundamental antioxidant molecule in serum and (ii) XOR-derived ROS are essential to the inflammatory defensive response. Although XOR has been the object of a large number of studies, most of them were focused on the pathological consequences of its activity and there is not a clear and schematic picture of XOR physiological roles. In this review, we try to fill this gap, reporting and graphically schematizing the main roles of XOR and its products.
Asunto(s)
Óxido Nítrico , Xantina Deshidrogenasa , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno , Ácido Úrico , Xantina Deshidrogenasa/metabolismo , Xantina Oxidasa/metabolismoRESUMEN
Ribosome-inactivating proteins (RIPs) are plant toxins that irreversibly damage ribosomes and other substrates, thus causing cell death. RIPs are classified in type 1 RIPs, single-chain enzymatic proteins, and type 2 RIPs, consisting of active A chains, similar to type 1 RIPs, linked to lectin B chains, which enable the rapid internalization of the toxin into the cell. For this reason, many type 2 RIPs are very cytotoxic, ricin, volkensin and stenodactylin being the most toxic ones. From the caudex of Adenia kirkii (Mast.) Engl., a new type 2 RIP, named kirkiin, was purified by affinity chromatography on acid-treated Sepharose CL-6B and gel filtration. The lectin, with molecular weight of about 58 kDa, agglutinated erythrocytes and inhibited protein synthesis in a cell-free system at very low concentrations. Moreover, kirkiin was able to depurinate mammalian and yeast ribosomes, but it showed little or no activity on other nucleotide substrates. In neuroblastoma cells, kirkiin inhibited protein synthesis and induced apoptosis at doses in the pM range. The biological characteristics of kirkiin make this protein a potential candidate for several experimental pharmacological applications both alone for local treatments and as component of immunoconjugates for systemic targeting in neurodegenerative studies and cancer therapy.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neuroblastoma/tratamiento farmacológico , Passifloraceae/enzimología , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Inactivadoras de Ribosomas Tipo 2/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Agregación Eritrocitaria/efectos de los fármacos , Humanos , Peso Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Inhibidores de la Síntesis de la Proteína/toxicidad , Proteínas Inactivadoras de Ribosomas Tipo 2/aislamiento & purificación , Proteínas Inactivadoras de Ribosomas Tipo 2/toxicidad , Ribosomas/efectos de los fármacos , Ribosomas/genética , Ribosomas/metabolismoRESUMEN
BACKGROUND: Staphylococcus aureus skin and soft tissue infections (SA-SSTIs) are common in healthcare and community settings, and recurrences occur at variable frequency, even after successful initial treatment. Knowing the exact burden and timing of recurrent disease is critical to planning and evaluating interventions to prevent recurrent SSTIs. METHODS: In this retrospective study, SSTI cases in patients aged ≥18 years at 3 US medical centers (Columbia, Chicago, Vanderbilt) between 2006 and 2016 were analyzed according to a biennial cohort design. Index SSTIs (with or without key comorbidities), either microbiologically confirmed to be SA-SSTI or not microbiologically tested (NMT-SSTI), were recorded within 1 calendar year and followed up for 12 months for recurrent infections. The number of index cases, proportion of index cases with ≥1 recurrence(s), time to first recurrence, and number of recurrences were collected for both SA-SSTI and NMT-SSTI events. RESULTS: In the most recent cohorts, 4755 SSTI cases were reported at Columbia, 2873 at Chicago, and 6433 at Vanderbilt. Of these, 452, 153, and 354 cases were confirmed to be due to S. aureus. Most cases were reported in patients without key comorbidities. Across centers, 16.4%-19.0% (SA-SSTI) and 11.0%-19.2% (NMT-SSTI) of index cases had ≥1 recurrence(s). In patients without key comorbidities, more than 60% of index SSTIs with recurrences had only 1 recurrence, half of which occurred in the first 3 months following primary infection. CONCLUSIONS: SA-SSTI recurrences are common among healthy adults and occur in at least 1 in 6 individuals during the 1 year following the primary event.