Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Genetics ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709495

RESUMEN

Inversions have been proposed to facilitate local adaptation, by linking together locally coadapted alleles at different loci. Prior work addressing this question theoretically has considered the spread of inversions in "continent-island" scenarios in which there is a unidirectional flow of maladapted migrants into the island population. In this setting, inversions capturing locally adaptive haplotypes are most likely to invade when selection is weak, because stronger local selection i) more effectively purges maladaptive alleles, and ii) generates linkage disequilibrium between adaptive alleles, thus lessening the advantage of inversions. We show this finding only holds under limited conditions by studying the establishment of inversions in a more general two-deme model, which explicitly considers the dynamics of allele frequencies in both populations linked by bidirectional migration. In this model, the level of symmetry between demes can be varied from complete asymmetry (continent-island) to complete symmetry. For symmetric selection and migration, strong selection increases the allele frequency divergence between demes thereby increasing the frequency of maladaptive alleles in migrants, favouring inversions-the opposite of the pattern seen in the asymmetric continent-island scenario. We also account for the likelihood that a new inversion captures an adaptive haplotype in the first instance. When considering the combined process of capture and invasion in "continent island" and symmetric scenarios, relatively strong selection increases inversion establishment probability. Migration must also be low enough that the inversion is likely to capture an adaptive allele combination, but not so low as to eliminate the inversion's advantage. Overall, our analysis suggests that inversions are likely to harbour larger effect alleles that experience relatively strong selection.

2.
Evolution ; 77(10): 2326-2333, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37615515

RESUMEN

Male X-linked meiotic drive systems, which cause the degeneration of Y-bearing sperm, are common in the Diptera. Sperm killing is typically associated with fitness costs that arise from the destruction of wildtype sperm and collateral damage to maturing drive sperm, resulting in poor success under sperm competition. We investigate X-linked meiotic drive fertility in the stalk-eyed fly, Teleopsis dalmanni. Drive male paternity was measured in double mating trials under sperm competition against a wildtype male. Drive males sired the same number of offspring as wildtype males, both when mated first or second. This is the first evidence that drive males can compete equally with non-drive males in double matings, challenging the assumption that drive males inevitably suffer reduced fertility. The finding is in accord with previous work showing that the number of sperm per ejaculate transferred to females during non-competitive single matings does not differ between drive and wildtype males, which is likely due to the adaptive evolution of enlarged testes in drive males. Future experiments will determine whether the competitive ability of drive males is maintained under higher rates of female remating likely to be experienced in nature.

3.
Proc Biol Sci ; 289(1986): 20221469, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350219

RESUMEN

The universal core of metabolism could have emerged from thermodynamically favoured prebiotic pathways at the origin of life. Starting with H2 and CO2, the synthesis of amino acids and mixed fatty acids, which self-assemble into protocells, is favoured under warm anoxic conditions. Here, we address whether it is possible for protocells to evolve greater metabolic complexity, through positive feedbacks involving nucleotide catalysis. Using mathematical simulations to model metabolic heredity in protocells, based on branch points in protometabolic flux, we show that nucleotide catalysis can indeed promote protocell growth. This outcome only occurs when nucleotides directly catalyse CO2 fixation. Strong nucleotide catalysis of other pathways (e.g. fatty acids and amino acids) generally unbalances metabolism and slows down protocell growth, and when there is competition between catalytic functions cell growth collapses. Autocatalysis of nucleotide synthesis can promote growth but only if nucleotides also catalyse CO2 fixation; autocatalysis alone leads to the accumulation of nucleotides at the expense of CO2 fixation and protocell growth rate. Our findings offer a new framework for the emergence of greater metabolic complexity, in which nucleotides catalyse broad-spectrum processes such as CO2 fixation, hydrogenation and phosphorylation important to the emergence of genetic heredity at the origin of life.


Asunto(s)
Células Artificiales , Herencia , Células Artificiales/química , Células Artificiales/metabolismo , Dióxido de Carbono , Ácidos Grasos/química , Aminoácidos/química , Nucleótidos
4.
Biol Lett ; 18(11): 20220352, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36448294

RESUMEN

The sex ratio (SR) X-linked meiotic drive system in stalk-eyed flies destroys Y-bearing sperm. Unlike other SR systems, drive males do not suffer fertility loss. They have greatly enlarged testes which compensate for gamete killing. We predicted that enlarged testes arise from extended development with resources re-allocated from the accessory glands, as these tend to be smaller in drive males. To test this, we tracked the growth of the testes and accessory glands of wild-type and drive males over 5-6 weeks post-eclosion before males attained sexual maturity. Neither of the original predictions is supported by these data. Instead, we found that the drive male testes were enlarged at eclosion, reflecting a greater allocation of resources to the testes during pupation. Testes grow at a higher rate during early adult development in drive males, but there was no evidence that this retards the growth of the accessory glands. Further experiments are proposed to investigate whether smaller accessory glands only arise in drive males post-copulation or when flies are subjected to nutritional stress. Our experimental findings support the idea that enlarged testes in drive males arise as an adaptive allocation of resources to traits that enhance male reproductive success.


Asunto(s)
Dípteros , Masculino , Animales , Testículo , Semen , Cara , Ojo
5.
Proc Natl Acad Sci U S A ; 119(35): e2205041119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994648

RESUMEN

The transition from prokaryotic lateral gene transfer to eukaryotic meiotic sex is poorly understood. Phylogenetic evidence suggests that it was tightly linked to eukaryogenesis, which involved an unprecedented rise in both genome size and the density of genetic repeats. Expansion of genome size raised the severity of Muller's ratchet, while limiting the effectiveness of lateral gene transfer (LGT) at purging deleterious mutations. In principle, an increase in recombination length combined with higher rates of LGT could solve this problem. Here, we show using a computational model that this solution fails in the presence of genetic repeats prevalent in early eukaryotes. The model demonstrates that dispersed repeat sequences allow ectopic recombination, which leads to the loss of genetic information and curtails the capacity of LGT to prevent mutation accumulation. Increasing recombination length in the presence of repeat sequences exacerbates the problem. Mutational decay can only be resisted with homology along extended sequences of DNA. We conclude that the transition to homologous pairing along linear chromosomes was a key innovation in meiotic sex, which was instrumental in the expansion of eukaryotic genomes and morphological complexity.


Asunto(s)
Expansión de las Repeticiones de ADN , Eucariontes , Evolución Molecular , Transferencia de Gen Horizontal , Meiosis , Simulación por Computador , Expansión de las Repeticiones de ADN/genética , Eucariontes/genética , Transferencia de Gen Horizontal/genética , Genoma/genética , Meiosis/genética , Mutación , Acumulación de Mutaciones , Filogenia , Células Procariotas
6.
Elife ; 102021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34279226

RESUMEN

Selection against deleterious mitochondrial mutations is facilitated by germline processes, lowering the risk of genetic diseases. How selection works is disputed: experimental data are conflicting and previous modeling work has not clarified the issues; here, we develop computational and evolutionary models that compare the outcome of selection at the level of individuals, cells and mitochondria. Using realistic de novo mutation rates and germline development parameters from mouse and humans, the evolutionary model predicts the observed prevalence of mitochondrial mutations and diseases in human populations. We show the importance of organelle-level selection, seen in the selective pooling of mitochondria into the Balbiani body, in achieving high-quality mitochondria at extreme ploidy in mature oocytes. Alternative mechanisms debated in the literature, bottlenecks and follicular atresia, are unlikely to account for the clinical data, because neither process effectively eliminates mitochondrial mutations under realistic conditions. Our findings explain the major features of female germline architecture, notably the longstanding paradox of over-proliferation of primordial germ cells followed by massive loss. The near-universality of these processes across animal taxa makes sense in light of the need to maintain mitochondrial quality at extreme ploidy in mature oocytes, in the absence of sex and recombination.


Asunto(s)
Células Germinativas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Oocitos/metabolismo , Ploidias , Animales , Evolución Biológica , Muerte Celular , Proliferación Celular , ADN Mitocondrial/genética , Femenino , Atresia Folicular , Humanos , Mamíferos/genética , Ratones , Mutación , Oogénesis
7.
Curr Biol ; 31(10): R478-R481, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34033770

RESUMEN

A new study using artificial selection reveals that the size of the sex comb on the legs of male flies is genetically correlated with their fertility success under conditions of sperm competition.


Asunto(s)
Fertilidad , Conducta Sexual Animal , Animales , Masculino , Espermatozoides
8.
Genetics ; 217(1): 1-11, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33683360

RESUMEN

X-linked meiotic drivers cause X-bearing sperm to be produced in excess by male carriers, leading to female-biased sex ratios. Here, we find general conditions for the spread and fixation of X-linked alleles. Our conditions show that the spread of X-linked alleles depends on sex-specific selection and transmission rather than the time spent in each sex. Applying this logic to meiotic drive, we show that polymorphism is heavily dependent on sperm competition induced both by female and male mating behavior and the degree of compensation to gamete loss in the ejaculate size of drive males. We extend these evolutionary models to investigate the demographic consequences of biased sex ratios. Our results suggest driving X-alleles that invade and reach polymorphism (or fix and do not bias segregation excessively) will boost population size and persistence time by increasing population productivity, demonstrating the potential for selfish genetic elements to move sex ratios closer to the population-level optimum. However, when the spread of drive causes strong sex-ratio bias, it can lead to populations with so few males that females remain unmated, cannot produce offspring, and go extinct. This outcome is exacerbated when the male mating rate is low. We suggest that researchers should consider the potential for ecologically beneficial side effects of selfish genetic elements, especially in light of proposals to use meiotic drive for biological control.


Asunto(s)
Evolución Molecular , Meiosis , Modelos Genéticos , Cromosoma X/genética , Animales , Femenino , Aptitud Genética , Masculino , Polimorfismo Genético , Secuencias Repetitivas de Ácidos Nucleicos , Razón de Masculinidad , Selección Sexual
9.
J Evol Biol ; 34(5): 736-745, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33559198

RESUMEN

Meiotic drive systems are associated with low-frequency chromosomal inversions. These are expected to accumulate deleterious mutations due to reduced recombination and low effective population size. We test this prediction using the 'sex-ratio' (SR) meiotic drive system of the Malaysian stalk-eyed fly Teleopsis dalmanni. SR is associated with a large inversion (or inversions) on the X chromosome. In particular, we study eyespan in males carrying the SR chromosome, as this trait is a highly exaggerated, sexually dimorphic trait, known to have heightened condition-dependent expression. Larvae were raised in low and high larval food stress environments. SR males showed reduced eyespan under the low and high stress treatments, but there was no evidence of a condition-dependent decrease in eyespan under high stress. Similar but more complex patterns were observed for female eyespan, with evidence of additivity under low stress and heterosis under high stress. These results do not support the hypothesis that reduced sexual ornament size in meiotic drive males is due to a condition-dependent response to the putative increase in mutation load. Instead, reduced eyespan likely reflects compensatory resource allocation to different traits in response to drive-mediated destruction of sperm.


Asunto(s)
Inversión Cromosómica , Cromosomas de Insectos , Dípteros/genética , Caracteres Sexuales , Animales , Evolución Biológica , Dípteros/anatomía & histología , Femenino , Cabeza/anatomía & histología , Masculino
10.
Elife ; 92020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32990598

RESUMEN

Prokaryotes acquire genes from the environment via lateral gene transfer (LGT). Recombination of environmental DNA can prevent the accumulation of deleterious mutations, but LGT was abandoned by the first eukaryotes in favour of sexual reproduction. Here we develop a theoretical model of a haploid population undergoing LGT which includes two new parameters, genome size and recombination length, neglected by previous theoretical models. The greater complexity of eukaryotes is linked with larger genomes and we demonstrate that the benefit of LGT declines rapidly with genome size. The degeneration of larger genomes can only be resisted by increases in recombination length, to the same order as genome size - as occurs in meiosis. Our results can explain the strong selective pressure towards the evolution of sexual cell fusion and reciprocal recombination during early eukaryotic evolution - the origin of meiotic sex.


Asunto(s)
Eucariontes/genética , Evolución Molecular , Transferencia de Gen Horizontal/genética , Meiosis/genética , Genoma/genética , Haploidia , Modelos Genéticos , Tasa de Mutación , Células Procariotas , Reproducción/genética
11.
J Evol Biol ; 33(10): 1345-1360, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32969551

RESUMEN

Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general.


Asunto(s)
Evolución Biológica , Tecnología de Genética Dirigida , Selección Genética
13.
Am Nat ; 195(4): 743-751, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32216661

RESUMEN

Selfish genetic elements that gain a transmission advantage through the destruction of sperm have grave implications for drive male fertility. In the X-linked meiotic drive system (SR) of a stalk-eyed fly, we found that SR males have greatly enlarged testes and maintain high fertility despite the destruction of half of their sperm, even when challenged with fertilizing large numbers of females. Conversely, we observed reduced allocation of resources to the accessory glands that probably explains the lower mating frequency of SR males. Body size and eye span were also reduced, which are likely to impair viability and precopulatory success. We discuss the potential evolutionary causes of these differences between drive and standard males.


Asunto(s)
Dípteros/genética , Dípteros/fisiología , Fertilidad/genética , Meiosis , Animales , Tamaño Corporal , Copulación/fisiología , Femenino , Masculino , Razón de Masculinidad , Espermatozoides , Testículo/anatomía & histología , Cromosoma X/genética
14.
Proc Biol Sci ; 286(1910): 20191414, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31480972

RESUMEN

A number of species are affected by Sex-Ratio (SR) meiotic drive, a selfish genetic element located on the X-chromosome that causes dysfunction of Y-bearing sperm. SR is transmitted to up to 100% of offspring, causing extreme sex ratio bias. SR in several species is found in a stable polymorphism at a moderate frequency, suggesting there must be strong frequency-dependent selection resisting its spread. We investigate the effect of SR on female and male egg-to-adult viability in the Malaysian stalk-eyed fly, Teleopsis dalmanni. SR meiotic drive in this species is old, and appears to be broadly stable at a moderate (approx. 20%) frequency. We use large-scale controlled crosses to estimate the strength of selection acting against SR in female and male carriers. We find that SR reduces the egg-to-adult viability of both sexes. In females, homozygous females experience greater reduction in viability (sf = 0.242) and the deleterious effects of SR are additive (h = 0.511). The male deficit in viability (sm = 0.214) is not different from that in homozygous females. The evidence does not support the expectation that deleterious side effects of SR are recessive or sex-limited. We discuss how these reductions in egg-to-adult survival, as well as other forms of selection acting on SR, may maintain the SR polymorphism in this species.


Asunto(s)
Dípteros/fisiología , Ojo , Meiosis , Razón de Masculinidad , Animales , Femenino , Masculino , Polimorfismo Genético , Espermatozoides , Cromosoma X
15.
Elife ; 82019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31464685

RESUMEN

The two partners required for sexual reproduction are rarely the same. This pattern extends to species which lack sexual dimorphism yet possess self-incompatible gametes determined at mating-type regions of suppressed recombination, likely precursors of sex chromosomes. Here we investigate the role of cellular signaling in the evolution of mating-types. We develop a model of ligand-receptor dynamics, and identify factors that determine the capacity of cells to send and receive signals. The model specifies conditions favoring the evolution of gametes producing ligand and receptor asymmetrically and shows how these are affected by recombination. When the recombination rate evolves, the conditions favoring asymmetric signaling also favor tight linkage of ligand and receptor loci in distinct linkage groups. These results suggest that selection for asymmetric gamete signaling could be the first step in the evolution of non-recombinant mating-type loci, paving the road for the evolution of anisogamy and sexes.


Asunto(s)
Evolución Biológica , Hongos/genética , Genes del Tipo Sexual de los Hongos , Recombinación Genética , Modelos Genéticos
16.
J Evol Biol ; 32(8): 868-877, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31134703

RESUMEN

There is considerable debate over the value of male sexual ornaments as signals of genetic quality. Studies alternately report that environmental variation enhances or diminishes the genetic signal, or leads to crossover where genotypes perform well in one environment but poorly in another. A unified understanding is lacking. We conduct a novel experimental test examining the dual effects of distinct categories of genetic (inbred vs. crossed parental lines) and environmental quality (low, through high to extreme larval food stress) on a condition-dependent male ornament. We find that differences in genetic quality signalled by the ornament (male eyespan in Diasemopsis meigenii stalk-eyed flies) become visible and are amplified under high stress but are overwhelmed in extreme-stress environments. Variance among independent genetic lines increases with environmental stress in both genetic quality classes, but at a slower rate in high quality outcrossed flies. Individual genetic lines generally maintain their ranks across environments, except among high quality lines under low environmental stress, where low genetic variance among lines precludes differentiation between ranks. Our results provide a conceptual advance, demonstrating a unified pattern for how genetic and environmental quality interact. They show when environmental conditions lead to the amplification of differences in signals of genetic quality and thereby enhance the potential indirect genetic benefits gained by female mate choice.


Asunto(s)
Dípteros/genética , Dípteros/fisiología , Aptitud Genética , Preferencia en el Apareamiento Animal , Estrés Fisiológico , Animales , Ambiente , Femenino , Masculino
17.
Heredity (Edinb) ; 122(6): 916-926, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30467401

RESUMEN

Meiotic drive genes cause the degeneration of non-carrier sperm to bias transmission in their favour. Males carrying meiotic drive are expected to suffer reduced fertility due to the loss of sperm and associated harmful side-effects of the mechanisms causing segregation distortion. However, sexual selection should promote adaptive compensation to overcome these deleterious effects. We investigate this using SR, an X-linked meiotic drive system in the stalk-eyed fly, Teleopsis dalmanni. Despite sperm destruction caused by drive, we find no evidence that SR males transfer fewer sperm to the female's spermathecae (long-term storage organs). Likewise, migration from the spermathecae to the ventral receptacle for fertilisation is similar for SR and wildtype male sperm, both over short and long time-frames. In addition, sperm number in storage is similar even after males have mated multiple times. Our study challenges conventional assumptions about the deleterious effects of drive on male fertility. This suggests that SR male ejaculate investment per ejaculate has been adjusted to match sperm delivery by wildtype males. We interpret these results in the light of recent theoretical models that predict how ejaculate strategies evolve when males vary in the resources allocated to reproduction or in sperm fertility. Adaptive compensation is likely in species where meiotic drive has persisted over many generations and predicts a higher stable frequency of drive maintained in wild populations. Future research must determine exactly how drive males compensate for failed spermatogenesis, and how such compensation may trade-off with investment in other fitness traits.


Asunto(s)
Dípteros/genética , Meiosis , Espermatozoides/citología , Animales , Dípteros/citología , Femenino , Masculino , Razón de Masculinidad , Recuento de Espermatozoides , Cromosoma X/genética , Cromosoma Y/genética
18.
Ecol Evol ; 7(23): 10103-10115, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29238540

RESUMEN

Polyandry, female mating with multiple males, is widespread across many taxa and almost ubiquitous in insects. This conflicts with the traditional idea that females are constrained by their comparatively large investment in each offspring, and so should only need to mate once or a few times. Females may need to mate multiply to gain sufficient sperm supplies to maintain their fertility, especially in species in which male promiscuity results in division of their ejaculate among many females. Here, we take a novel approach, utilizing wild-caught individuals to explore how natural variation among females and males influences fertility gains for females. We studied this in the Malaysian stalk-eyed fly species Teleopsis dalmanni. After an additional mating, females benefit from greatly increased fertility (proportion fertile eggs). Gains from multiple mating are not uniform across females; they are greatest when females have high fecundity or low fertility. Fertility gains also vary spatially, as we find an additional strong effect of the stream from which females were collected. Responses were unaffected by male mating history (males kept with females or in male-only groups). Recent male mating may be of lesser importance because males in many species, including T. dalmanni, partition their ejaculate to maintain their fertility over many matings. This study highlights the importance of complementing laboratory studies with data on wild-caught populations, where there is considerable heterogeneity between individuals. Future research should focus on environmental, demographic and genetic factors that are likely to significantly influence variation in individual female fecundity and fertility.

19.
Genome Biol Evol ; 9(11): 3054-3058, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29106528

RESUMEN

The central role of the mitochondrion for cellular and organismal metabolism is well known, yet its functional role in evolution has rarely been featured in leading international conferences. Moreover, the contribution of mitochondrial genetics to complex disease phenotypes is particularly important, and although major advances have been made in the field of genomics, mitochondrial genomic data have in many cases been overlooked. Accumulating data and new knowledge support a major contribution of this maternally inherited genome, and its interactions with the nucleus, to both major evolutionary processes and diverse disease phenotypes. These advances encouraged us to assemble the first Mitochondrial Genomics and Evolution (MGE) meeting-an SMBE satellite and Israeli Science foundation international conference (Israel, September 2017). Here, we report the content and outcome of the MGE meeting (https://www.mge2017.com/; last accessed November 5, 2017).


Asunto(s)
Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Mitocondrias/genética , Núcleo Celular/genética , ADN Mitocondrial/genética , Humanos , Herencia Materna , Mitocondrias/metabolismo
20.
Philos Trans R Soc Lond B Biol Sci ; 372(1735)2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29061892

RESUMEN

Here we develop a computational model that examines one of the first major biological innovations-the origin of heredity in simple protocells. The model assumes that the earliest protocells were autotrophic, producing organic matter from CO2 and H2 Carbon fixation was facilitated by geologically sustained proton gradients across fatty acid membranes, via iron-sulfur nanocrystals lodged within the membranes. Thermodynamic models suggest that organics formed this way should include amino acids and fatty acids. We assume that fatty acids partition to the membrane. Some hydrophobic amino acids chelate FeS nanocrystals, producing three positive feedbacks: (i) an increase in catalytic surface area; (ii) partitioning of FeS nanocrystals to the membrane; and (iii) a proton-motive active site for carbon fixing that mimics the enzyme Ech. These positive feedbacks enable the fastest-growing protocells to dominate the early ecosystem through a simple form of heredity. We propose that as new organics are produced inside the protocells, the localized high-energy environment is more likely to form ribonucleotides, linking RNA replication to its ability to drive protocell growth from the beginning. Our novel conceptualization sets out conditions under which protocell heredity and competition could arise, and points to where crucial experimental work is required.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.


Asunto(s)
Evolución Biológica , Herencia , Origen de la Vida , Células Artificiales , Membrana Celular/metabolismo , Modelos Genéticos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA